Supplementary Information

Investigating Electrochemical Reaction and Surface Chemistry for Performance Enhancement of Si Composite Anode Using bis(fluorosulfonyl)imide Based Ionic Liquid
Hitoshi Shobukawa,a,b JaeWook Shin,a Judith Alvarado,a Cyrus S. Rustomji,a Ying Shirley Meng a,*
a Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
b Corporate Research & Development Center, Asahi Kasei, 1-105 Kanda Jinbocho, Chiyoda-ku, Tokyo 101-8101 Japan

*Corresponding author: shirleymeng@ucsd.edu
Fig. 1S Charge/discharge profile of Si anode at 2nd, 50th and 100th cycle with (a) LiPF$_6$/EC/DEC, (b) LiPF$_6$/EC/DEC/FEC and (c) LiFSI/EMIFSI

Fig. 2S Ionic conductivity measurement of the electrolytes in LiPF$_6$/EC/DEC, LiPF$_6$/EC/DEC/FEC and LiFSI/EMIFSI
Fig. 3S (a) C 1s spectra, (b) F 1s and (c) Li 1s spectra of the Si composite anode after 100 cycles with LiPF$_6$/EC/DEC, LiPF$_6$/EC/DEC/FEC and LiFSI/EMI-FSI respectively.