Electronic supplementary information

Influence of the mobile ions on the electroluminescence of perovskite solar cells

Enrico Bandiello, Jorge Ávila, Lidón Gil-Escrig, Eelco Tekelenburg, Michele Sessolo* and Henk J. Bolink

a Instituto de Ciencia Molecular, Universidad de Valencia, C/ Catedrático J. Beltrán 2, 46980 Paterna, Spain. *E-mail: michele.sessolo@uv.es

b Faculty of Mathematics and Natural Sciences, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
Fig. S1 Electrical characterization under illumination for a solar cells with the structure ITO/PEDOT:PSS/polyTPD/MAPbI$_3$/PCBM/Ba-Ag, where the perovskite absorber thickness is 350 nm. The voltage scan speed is 0.35 V s$^{-1}$, in forward (negative to positive) and in reverse (positive to negative) bias.

<table>
<thead>
<tr>
<th></th>
<th>J_{sc} (mA cm$^{-2}$)</th>
<th>V_{oc} (mV)</th>
<th>FF (%)</th>
<th>PCE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward</td>
<td>15.7</td>
<td>1087</td>
<td>79.7</td>
<td>13.6</td>
</tr>
<tr>
<td>Reverse</td>
<td>15.7</td>
<td>1088</td>
<td>80.2</td>
<td>13.7</td>
</tr>
</tbody>
</table>

Table S1. Photovoltaic parameters of the solar cell reported in Figure S1.
Fig. S2 (a) EQE and (b) electroluminescence for the non-ohmic device B when biased in dark for 300 s.

Fig. S3 DC component of the electroluminescence for the perovskite diode B (single carrier device) for increasing constant driving voltage (V_{bias}).
Fig. S4 Time dependent current density curve showing the recovery of the current density after the fast J-V sweep, for device B.

Fig. S5 (a) Simplified band diagram indicating the maximum attainable V_{oc} as related to the quasi-Fermi level splitting $\Delta \mu$. (b) In a degraded solar cells, an extraction barrier is present at least at one of the interface (here the ETL), reducing the device built-in voltage and causing s-shaped J-V characteristics. (c) Forward biasing the device reduced the barrier for the electron injection (extraction), hence recovering the V_{bi} and the device FF.