Supporting Information

Pitch-Based Hyper-cross-linked Polymers with High

Performance for Gas Adsorption

Hui Gao,^a Lei Ding,^a Hua Bai,^a Anhua Liu,^a Sizhong Li,^b and Lei Li^{*a}

^a College of Materials, Xiamen University, Xiamen, 361005, P. R. China. E-mail: lilei@xmu.edu.cn

^b College of Material Science and Engineering, Huaqiao University, Xiamen, 362021, P. R. China.

Samples	Petroleum	Coal tar	Coal tar	Coal tar	AlCl ₃ /g
	pitch/g	pitch-1/g	pitch-2/g	pitch-3/g	
PHCP-1	0.3091	-	-	-	1.2364
PHCP-2	0.3091	-	-	-	1.5455
PHCP-3	0.3091	-	-	-	1.8546
PHCP-4	0.3091	-	-	-	2.4728
PHCP-5	0.3091	-	-	-	2.7819
C1HCP-1	-	0.3091	-	-	1.2364
C1HCP-2	-	0.3091	-	-	1.5455
C1HCP-3	-	0.3091	-	-	1.8546
C1HCP-4	-	0.3091	-	-	2.4728
C1HCP-5	-	0.3091	-	-	2.7819
C2HCP-1	-	-	0.3091	-	1.2364
C2HCP-2	-	-	0.3091	-	1.5455
C2HCP-3	-	-	0.3091	-	1.8546
C2HCP-4	-	-	0.3091	-	2.4728
C2HCP-5	-	-	0.3091	-	2.7819
C3HCP-1	-	-	-	0.3091	1.2364
C3HCP-2	-	-	-	0.3091	1.5455
C3HCP-3	-	-	-	0.3091	1.8546
C3HCP-4	-	-	-	0.3091	2.4728
C3HCP-5	-	-	-	0.3091	2.7819

Table S1. The formula of pitch and AlCl₃ in each experiment.^a

^a In all experiments, the fixed amount of CHCl₃ is 10 ml.

Figure S1. The FT-IR spectra of the PHCP-1, PHCP-2, PHCP-4 and PHCP-5.

Figure S2. The FT-IR spectra of C1HCP-1, C1HCP-2, C1HCP-4 and C1HCP-5.

Figure S3. The FT-IR spectra of C2HCP-1, C2HCP-2, C2HCP-4 and C2HCP-5.

Figure S4. The FT-IR spectra of C3HCP-1, C3HCP-2, C3HCP-4 and C3HCP-5.

Figure S5. Solid state ¹³C cross-polarization nuclear magic-angle spinning (CP/MAS) NMR spectra of PLP, CTP1, CTP2 and CTP3. Asterisks denote spinning sidebands.

Figure S6. EDS results of the PLP (a), PHCP-3 (b), CTP2 (c), C2HCP-3 (d), CTP3 (e) and C3HCP-3 (f).

Samples	C/wt%	H/wt%	S/wt%
РНСР-3	69.27	3.68	1.00
C1HCP-3	74.42	4.21	0.21
C2HCP-3	49.36	4.29	0.36
СЗНСР-З	69.40	3.97	0.88

Table S2. Elemental analysis of pitch-based HCPs.

Figure S7. C 1s (a) and Cl 2p (b) XPS spectra of C1HCP-3.

Figure S8. C 1s (a) and Cl 2p (b) XPS spectra of C2HCP-3.

Figure S9. C 1s (a) and Cl 2p (b) XPS spectra of C3HCP-3.

Figure S10. X-ray diffractions spectra of PHCP-2, C1HCP-2, C2HCP-2 and C3HCP-2.

Figure S11. HR-TEM images of PHCP-3 (a), C1HCP-3 (b), C2HCP-3 (c) and C3HCP-3 (d). Scale bar: 5 nm.

	S _{BET} ^a	S _{Micro} b	M_{PV}^{c}	PV ^d
Sample	$(m^2 g^{-1})$	$(m^2 g^{-1})$	$(cm^3 g^{-1})$	$(cm^3 g^{-1})$
PHCP-1	1119	810	0.48	0.68
PHCP-2	1197	816	0.51	0.74
PHCP-4	1063	765	0.46	0.67
PHCP-5	1108	776	0.48	0.69
C1HCP-1	752	570	0.33	0.42
C1HCP-2	845	689	0.37	0.48
C1HCP-4	751	495	0.32	0.46
C1HCP-5	629	415	0.27	0.43
C2HCP-1	587	475	0.26	0.32
C2HCP-2	621	497	0.27	0.36
C2HCP-4	848	621	0.37	0.51
C2HCP-5	788	579	0.34	0.45
C3HCP-1	345	273	0.15	0.21
С3НСР-2	493	369	0.21	0.31
C3HCP-4	434	325	0.19	0.30
C3HCP-5	375	311	0.16	0.22

Table S3. Surface areas and pore properties of pitch-based HCPs.

^a Surface area calculated from the nitrogen adsorption isotherms at 77.3 K using the BET equation. ^b Micropore surface area calculated from the nitrogen adsorption isotherms at 77.3 K using the t-plot equation. ^c Micropore volume calculated from the nitrogen isotherm at $P/P_0 = 0.15$, 77.3 K using the t-plot equation. ^d Pore volume calculated from the nitrogen isotherm at $P/P_0 = 0.99$, 77.3 K.

Figure S12. Nitrogen adsorption-desorption isotherms for PHCP-1 before and after being immersed and stirred in 1 M NaOH (blue) and 1 M HCl (red) for 24 h, respectively.

Figure S13. Nitrogen adsorption-desorption isotherms for C1HCP-5 before and after being immersed and stirred in 1 M NaOH (blue) and 1 M HCl (red) for 24 h, respectively.

Figure S14. Nitrogen adsorption-desorption isotherms for C2HCP-5 before and after being immersed and stirred in 1 M NaOH (blue) and 1 M HCl (red) for 24 h, respectively.

Figure S15. Adsorption (filled) and desorption (empty) isotherms of CO_2 at 273 K for PHCP-1, PHCP-2, PHCP-4 and PHCP-5.

Figure S16. Adsorption (filled) and desorption (empty) isotherms of CO_2 at 273 K for C1HCP-1, C1HCP-2, C1HCP-4 and C1HCP-5.

Figure S17. Adsorption (filled) and desorption (empty) isotherms of CO_2 at 273 K for C2HCP-1, C2HCP-2, C2HCP-4 and C2HCP-5.

Figure S18. Adsorption (filled) and desorption (empty) isotherms of CO_2 at 273 K for C3HCP-1, C3HCP-2, C3HCP-4 and C3HCP-5.

Figure S19. CO₂ adsorption capacity for recycled PHCP-3 at 273 K, 1.0 bar.

Figure S20. CO₂ adsorption capacity for recycled C1HCP-2 at 273 K, 1.0 bar.

Figure S21. CO₂ adsorption capacity for recycled C2HCP-2 at 273 K, 1.0 bar.

Figure S22. CO₂ adsorption capacity for recycled C3HCP-2 at 273 K, 1.0 bar.

Figure S23. Nitrogen adsorption/desorption isotherms for activated carbon.