Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2016 ## Theoretical prediction of MoN₂ monolayer as a high capacity electrode material for metal ion batteries Xiaoming Zhang, ^a Zhiming Yu, ^{a,b} Shan-Shan Wang, ^a Shan Guan, ^{a,b} Hui Ying Yang, ^{*,a} Yugui Yao, *,b and Shengyuan A. Yang *,a Table SI Electrochemical characteristics of current widely investigated cathode materials. And corresponding reference in article. ^a Values without and within brackets are given for the theoretical and practical specific capacity of corresponding cathodes, respectively. | | Specific capacity ^a (mA h g ⁻¹) | Average potential (V vs. Li/Li ⁺) | Reference | |-----------------------------------|--|---|--------------| | MoN ₂ monolayer | 432 | 3.64 | Current work | | $LiCoO_2$ | 272 (140) | ~4.2 | 54,55 | | $LiNi_{1/3}Mn_{1/3}Co_{1/3}O_{2}$ | 272 (200) | ~3.7 | 56 | | $LiMn_2O_4$ | 148 (120) | ~4.1 | 57 | | LiFePO ₄ | 170 (160) | 3.45 | 58,59 | | S | 1675 (500-1100) | 2.15 | 60,61 | ^aResearch Laboratory for Quantum Materials and Engineering Product Development Pillar, Singapore University of Technology and Design, Singapore 487372, Singapore. E-mail: yanghuiying@sutd.edu.sg; shengyuan_yang@sutd.edu.sg ^bSchool of Physics, Beijing Institute of Technology, Beijing 100081, China. E-mail: ygyao@bit.edu.cn