Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2016

Theoretical prediction of MoN₂ monolayer as a high capacity electrode material for metal ion batteries

Xiaoming Zhang, ^a Zhiming Yu, ^{a,b} Shan-Shan Wang, ^a Shan Guan, ^{a,b} Hui Ying Yang, ^{*,a} Yugui Yao, *,b and Shengyuan A. Yang *,a

Table SI Electrochemical characteristics of current widely investigated cathode materials. And corresponding reference in article.

^a Values without and within brackets are given for the theoretical and practical specific capacity of corresponding cathodes, respectively.

	Specific capacity ^a (mA h g ⁻¹)	Average potential (V vs. Li/Li ⁺)	Reference
MoN ₂ monolayer	432	3.64	Current work
$LiCoO_2$	272 (140)	~4.2	54,55
$LiNi_{1/3}Mn_{1/3}Co_{1/3}O_{2}$	272 (200)	~3.7	56
$LiMn_2O_4$	148 (120)	~4.1	57
LiFePO ₄	170 (160)	3.45	58,59
S	1675 (500-1100)	2.15	60,61

^aResearch Laboratory for Quantum Materials and Engineering Product Development Pillar, Singapore University of Technology and Design, Singapore 487372, Singapore. E-mail: yanghuiying@sutd.edu.sg; shengyuan_yang@sutd.edu.sg

^bSchool of Physics, Beijing Institute of Technology, Beijing 100081, China. E-mail: ygyao@bit.edu.cn