Electronic Supplementary Information (ESI)

CdTe based quantum dot sensitized solar cells with efficiency exceeding 7% directly from quantum dots prepared in aqueous media

Junwei Yanga and Xinhua Zhonga,b

aKey Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China

bCollege of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China

*Email: zhongxh@ecust.edu.cn

Fax/Tel: +86 21 6425 0281
Table S1 Detail parameters for 5 QDSCs in parallel corresponding to differently sized CdTe QD sensitizers

<table>
<thead>
<tr>
<th>QDs</th>
<th>(J_{sc}) (mA·cm(^{-2}))</th>
<th>(V_{oc}) (V)</th>
<th>FF (%)</th>
<th>PCE (%)</th>
<th>PCE (%)(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>QD(_{554})</td>
<td>0.627</td>
<td>9.63</td>
<td>0.678</td>
<td>4.09</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.622</td>
<td>9.48</td>
<td>0.673</td>
<td>3.97</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.632</td>
<td>9.58</td>
<td>0.683</td>
<td>4.14</td>
<td>4.04 ± 0.09</td>
</tr>
<tr>
<td></td>
<td>0.626</td>
<td>9.40</td>
<td>0.668</td>
<td>3.93</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.628</td>
<td>9.78</td>
<td>0.665</td>
<td>4.08</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.608</td>
<td>11.85</td>
<td>0.667</td>
<td>4.81</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.615</td>
<td>11.53</td>
<td>0.676</td>
<td>4.79</td>
<td></td>
</tr>
<tr>
<td>QD(_{608})</td>
<td>0.601</td>
<td>11.97</td>
<td>0.683</td>
<td>4.91</td>
<td>4.87 ± 0.07</td>
</tr>
<tr>
<td></td>
<td>0.612</td>
<td>12.05</td>
<td>0.665</td>
<td>4.90</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.610</td>
<td>11.77</td>
<td>0.687</td>
<td>4.93</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.587</td>
<td>12.17</td>
<td>0.638</td>
<td>4.56</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.584</td>
<td>12.30</td>
<td>0.645</td>
<td>4.63</td>
<td></td>
</tr>
<tr>
<td>QD(_{640})</td>
<td>0.593</td>
<td>12.01</td>
<td>0.623</td>
<td>4.44</td>
<td>4.54 ± 0.08</td>
</tr>
<tr>
<td></td>
<td>0.582</td>
<td>12.35</td>
<td>0.639</td>
<td>4.59</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.598</td>
<td>11.92</td>
<td>0.630</td>
<td>4.49</td>
<td></td>
</tr>
</tbody>
</table>
Fig. S1 Nyquist curves under different bias voltages for CdTe (a), CdTe/CdS (b) and CdTe/CdSeS (c) QDSC devices.
Fig. S2 Cell efficiency normalized to the initial efficiency for CdTe, CdTe/CdS and CdTe/CdSeS cells under continuous 1 sun illumination.
Table S2 Photovoltaic parameters for 5 QDSCs in parallel corresponding to 4 cycles of CdS SILAR and 2-8 cycles of CdSeS SILAR

<table>
<thead>
<tr>
<th>QDs</th>
<th>J_{sc} (mA·cm$^{-2}$)</th>
<th>V_{oc} (V)</th>
<th>FF (%)</th>
<th>PCE (%)</th>
<th>PCE (%)a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plain CdTe</td>
<td>0.608</td>
<td>11.85</td>
<td>0.667</td>
<td>4.81</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.615</td>
<td>11.53</td>
<td>0.676</td>
<td>4.79</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.601</td>
<td>11.97</td>
<td>0.683</td>
<td>4.91</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.612</td>
<td>12.05</td>
<td>0.665</td>
<td>4.90</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.610</td>
<td>11.77</td>
<td>0.687</td>
<td>4.93</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.645</td>
<td>13.93</td>
<td>0.683</td>
<td>6.14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.631</td>
<td>14.01</td>
<td>0.668</td>
<td>5.91</td>
<td></td>
</tr>
<tr>
<td>CdTe/4CdS</td>
<td>0.640</td>
<td>13.55</td>
<td>0.659</td>
<td>5.71</td>
<td>5.95 ± 0.17</td>
</tr>
<tr>
<td></td>
<td>0.653</td>
<td>13.77</td>
<td>0.678</td>
<td>6.10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.639</td>
<td>14.12</td>
<td>0.657</td>
<td>5.93</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.629</td>
<td>12.89</td>
<td>0.680</td>
<td>5.51</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.633</td>
<td>13.03</td>
<td>0.676</td>
<td>5.58</td>
<td></td>
</tr>
<tr>
<td>CdTe/2CdSeS</td>
<td>0.622</td>
<td>13.25</td>
<td>0.672</td>
<td>5.54</td>
<td>5.51 ± 0.07</td>
</tr>
<tr>
<td></td>
<td>0.616</td>
<td>12.77</td>
<td>0.686</td>
<td>5.40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.641</td>
<td>12.69</td>
<td>0.679</td>
<td>5.52</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.628</td>
<td>15.43</td>
<td>0.687</td>
<td>6.66</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.632</td>
<td>15.18</td>
<td>0.676</td>
<td>6.49</td>
<td></td>
</tr>
<tr>
<td>CdTe/4CdSeS</td>
<td>0.618</td>
<td>15.62</td>
<td>0.695</td>
<td>6.71</td>
<td>6.60 ± 0.10</td>
</tr>
<tr>
<td></td>
<td>0.637</td>
<td>15.48</td>
<td>0.673</td>
<td>6.64</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.615</td>
<td>15.16</td>
<td>0.697</td>
<td>6.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.636</td>
<td>16.37</td>
<td>0.687</td>
<td>7.15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.629</td>
<td>16.58</td>
<td>0.694</td>
<td>7.24</td>
<td></td>
</tr>
<tr>
<td>CdTe/5CdSeS</td>
<td>0.621</td>
<td>16.20</td>
<td>0.691</td>
<td>6.95</td>
<td>7.10 ± 0.15</td>
</tr>
<tr>
<td></td>
<td>0.638</td>
<td>16.15</td>
<td>0.697</td>
<td>7.18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.609</td>
<td>16.71</td>
<td>0.679</td>
<td>6.91</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.609</td>
<td>16.09</td>
<td>0.657</td>
<td>6.44</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.613</td>
<td>16.29</td>
<td>0.643</td>
<td>6.42</td>
<td></td>
</tr>
<tr>
<td>CdTe/6CdSeS</td>
<td>0.622</td>
<td>16.35</td>
<td>0.641</td>
<td>6.52</td>
<td>6.47 ± 0.10</td>
</tr>
<tr>
<td></td>
<td>0.606</td>
<td>16.27</td>
<td>0.671</td>
<td>6.62</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.607</td>
<td>15.82</td>
<td>0.662</td>
<td>6.36</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.585</td>
<td>14.85</td>
<td>0.620</td>
<td>5.39</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.579</td>
<td>14.76</td>
<td>0.618</td>
<td>5.28</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.571</td>
<td>15.12</td>
<td>0.630</td>
<td>5.44</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.592</td>
<td>14.99</td>
<td>0.636</td>
<td>5.64</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.586</td>
<td>14.58</td>
<td>0.611</td>
<td>5.22</td>
<td></td>
</tr>
</tbody>
</table>