Supporting Information

Enhanced cycle performance of ultraflexible asymmetric supercapacitors based on hierarchical MnO$_2$@NiMoO$_4$ core-shell nanostructure and porous carbon

Xiuhua Wang*, Houyong Xia, Jie Gao, Bo Shi, Yao Fang, Mingwang Shao

*a Anhui Key Laboratory of Molecule-Based Materials, The Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China

b Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China

*Correspondence - mwshao@suda.edu.cn
Figure S1. XRD pattern of NiMoO$_4$.

Figure S2. (a) and (b) FESEM images of the precursor of MnO$_2$ nanowires in the high and low magnification, (c) and (d) FESEM images of NiMoO$_4$ nanoflakes in the high and low magnification.
Figure S3. Raman spectrum of MnO$_2$@NiMoO$_4$.

Figure S4. The CV curves of the (a) MnO$_2$, (b) NiMoO$_4$ and (c) MnO$_2$@NiMoO$_4$ supercapacitor at 1, 2500, and 5000 cycles.

Figure S5. FESEM images of MnO$_2$@NiMoO$_4$ electrode materials based on Ni foam substrate (a) without cycles test; (b), (c) and (d) after 2000, 3000 and 5000 cycles test, respectively.
Figure S6. (a) CV curves of porous carbon; and (b) Charge-discharge curves of porous carbon.