Electronic Supplementary Information

Vertically aligned ZnO-Au@CdS core-shell nanorod arrays as an all-solid-state vectorial Z-scheme system for photocatalytic application

Nan Zhang,a,b Shunji Xie,c Bo Weng,a,b and Yi-Jun Xu*a,b

a State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350002, P.R. China
b College of Chemistry, New Campus, Fuzhou University, Fuzhou, 350108, P.R. China
c State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P.R. China.

* To whom correspondence should be addressed.
E-mail: yjxu@fzu.edu.cn

Contents list

Fig. S1 FESEM image of ZnO seeds on FTO substrate.
Fig. S2 EDX spectrum for ZnO-Au@CdS-2 composite (the inset is the quantification results according to the EDX result).
Fig. S3 Cross-sectional FESEM image and the corresponding elemental mapping results of ZnO-Au@CdS-2 nanorod arrays on FTO substrate.
Fig. S4 XRD patterns of the ZnO-Au-2 and ZnO-Au@CdS composites with different contents of Au nanoparticles.
Fig. S5 (a) FESEM image and (b) XRD pattern of ZnO@CdS composite.
Fig. S6 UV-vis absorption spectra of photocatalytic reduction of 4-nitroaniline (4-NA) over ZnO-Au@CdS-2 nanorod arrays composite under simulated solar light irradiation with the addition of ammonium formate as holes scavenger and N₂ purge in water.

Table S1. Photocatalytic performance of ZnO-Au@CdS-2 composite for selective reduction of substituted aromatic nitro compounds in water under simulated sunlight irradiation with the addition of ammonium formate as holes scavenger and N₂ purge.

Fig. S7 Controlled experiments for 4-NA reduction over ZnO-Au@CdS-2 nanorod arrays composite using K₂S₂O₈ as scavenger for photogenerated electrons under simulated solar light irradiation with the addition of ammonium formate as holes scavenger and N₂ purge in water.

Fig. S8 Controlled experiments for 4-NA reduction over ZnO-Au@CdS-2 nanorod arrays composite under the irradiation of wavelength > 540 nm with the addition of ammonium formate as holes scavenger and N₂ purge in water.

Fig. S9 Photographs of (1) bare FTO substrate, (2) ZnO nanorod arrays, (3) ZnO-Au-2 nanorod...
arrays, (4) ZnO@CdS nanorod arrays, and (5) ZnO-Au@CdS-2 nanorod arrays on FTO.

Fig. S10 Electrochemical impedance spectroscopy (EIS) Nyquist plots of ZnO, ZnO-Au-2, ZnO@CdS and ZnO-Au@CdS-2 nanorod arrays electrodes in the electrolyte of \(\text{Na}_2\text{SO}_4 \) (0.2 M).

Fig. S11 Recycling photocatalytic reduction of 4-NA over ZnO-Au@CdS-2 nanorod arrays composite under simulated solar light irradiation with the addition of ammonium formate as holes scavenger and \(\text{N}_2 \) purge in water; the irradiation time for each run is 14 min.

Fig. S12 Chronoamperometry result of ZnO-Au@CdS-2 on the FTO glass without bias in the electrolyte of 0.2 M \(\text{Na}_2\text{SO}_4 \) with the addition of ammonium formate as holes scavenger under simulated sunlight irradiation.

Fig. S13 XRD spectra of the fresh and used ZnO-Au@CdS-2 as well as the standard XRD patterns of ZnO (JCPDS No. 79-2205) for comparison.

Fig. S14 SEM images of (A) fresh and (B) used ZnO-Au@CdS-2.

Fig. S15 TEM images of (A) fresh and (B) used ZnO-Au@CdS-2.

References
Fig. S1 FESEM image of ZnO seeds on FTO substrate.

Fig. S2 EDX spectrum for ZnO-Au@CdS-2 composite (the inset is the quantification results according to the EDX result).

Note: Fig. S2 shows the energy-dispersive X-ray (EDX) spectrum of ZnO-Au@CdS-2 nanorod arrays on FTO substrate. The results demonstrate that the ZnO-Au@CdS-2 composite contains O, Zn, Au, Cd and S elements. The signals of Si and Sn and the relatively high intensity of O signal can be ascribed to the presence of FTO substrate.
Note: As revealed by the cross-sectional elemental mapping results in Fig. S3, the elements of O, Zn, Au, Cd and S are evenly distributed in the arrays formed on the surface of FTO substrate and well consistent with the cross-section view FESEM image of ZnO-Au@CdS-2 nanorod arrays, as indicated by the dash lines.

Fig. S3 Cross-sectional FESEM image and the corresponding elemental mapping results of ZnO-Au@CdS-2 nanorod arrays on FTO substrate.

Fig. S4 XRD patterns of the ZnO-Au-2 and ZnO-Au@CdS composites with different contents of Au nanoparticles.
Fig. S5 (a) FESEM image and (b) XRD pattern of ZnO@CdS composite.

Fig. S6 UV-vis absorption spectra of photocatalytic reduction of 4-nitroaniline (4-NA) over ZnO-Au@CdS-2 nanorod arrays composite under simulated solar light irradiation with the addition of ammonium formate as holes scavenger and N$_2$ purge in water.
Table S1. Photocatalytic performance of ZnO-Au@CdS-2 composite for selective reduction of substituted aromatic nitro compounds in water under simulated sunlight irradiation with the addition of ammonium formate as holes scavenger and N\textsubscript{2} purge.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>Product</th>
<th>Time/min</th>
<th>Conversion/%a</th>
<th>Selectivity/%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(\text{NO}_2\text{NH}_2)</td>
<td>(\text{NH}_2\text{NH}_2)</td>
<td>14</td>
<td>97</td>
<td>92</td>
</tr>
<tr>
<td>2</td>
<td>(\text{NO}_2\text{NH}_2)</td>
<td>(\text{NH}_2\text{NH}_2)</td>
<td>14</td>
<td>92</td>
<td>93</td>
</tr>
<tr>
<td>3</td>
<td>(\text{NO}_2\text{H}_2\text{N}\text{NH}_2)</td>
<td>(\text{NH}_2\text{NH}_2)</td>
<td>14</td>
<td>64</td>
<td>96</td>
</tr>
<tr>
<td>4</td>
<td>(\text{NO}_2\text{O}_2\text{H}_2\text{N}\text{NH}_2)</td>
<td>(\text{NH}_2\text{NH}_2)</td>
<td>14</td>
<td>52</td>
<td>95</td>
</tr>
<tr>
<td>5</td>
<td>(\text{NO}_2\text{H}_2\text{O}\text{NH}_2)</td>
<td>(\text{NH}_2\text{NH}_2)</td>
<td>14</td>
<td>63</td>
<td>95</td>
</tr>
<tr>
<td>6</td>
<td>(\text{NO}_2\text{H}_3\text{C}\text{O}\text{NH}_2)</td>
<td>(\text{H}_3\text{C}\text{O}\text{NH}_2)</td>
<td>14</td>
<td>87</td>
<td>97</td>
</tr>
</tbody>
</table>

Fig. S7 Controlled experiments for 4-NA reduction over ZnO-Au@CdS-2 nanorod arrays composite using K\textsubscript{2}S\textsubscript{2}O\textsubscript{8} as scavenger for photogenerated electrons under simulated solar light irradiation with the addition of ammonium formate as holes scavenger and N\textsubscript{2} purge in water.
Fig. S8 Controlled experiments for 4-NA reduction over ZnO-Au@CdS-2 nanorod arrays composite under the irradiation of wavelength > 540 nm with the addition of ammonium formate as holes scavenger and N$_2$ purge in water.

Fig. S9 Photographs of (1) bare FTO substrate, (2) ZnO nanorod arrays, (3) ZnO-Au-2 nanorod arrays, (4) ZnO@CdS nanorod arrays, and (5) ZnO-Au@CdS-2 nanorod arrays on FTO.
Fig. S10 Electrochemical impedance spectroscopy (EIS) Nyquist plots of ZnO, ZnO-Au-2, ZnO@CdS and ZnO-Au@CdS-2 nanorod arrays electrodes in the electrolyte of Na$_2$SO$_4$ (0.2 M).

Fig. S11 Recycling photocatalytic reduction of 4-NA over ZnO-Au@CdS-2 nanorod arrays composite under simulated solar light irradiation with the addition of ammonium formate as holes scavenger and N$_2$ purge in water; the irradiation time for each run is 14 min.
Fig. S12 Chronoamperometry result of ZnO-Au@CdS-2 on the FTO glass without bias in the electrolyte of 0.2 M Na$_2$SO$_4$ with the addition of ammonium formate as holes scavenger under simulated sunlight irradiation.

Note: It can be seen from the chronoamperometry result in Fig. S12 that with the simulated sunlight irradiation for nearly 2 h, the ZnO-Au@CdS-2 electrode is able to keep about 71.9% photocurrent density of the initial value, indicating its relatively good stability.$^{S1, S2}$

Fig. S13 XRD spectra of the fresh and used ZnO-Au@CdS-2 as well as the standard XRD patterns of ZnO (JCPDS No. 79-2205) for comparison.
Fig. S14 SEM images of (A) fresh and (B) used ZnO-Au@CdS-2.

Fig. S15 TEM images of (A) fresh and (B) used ZnO-Au@CdS-2.

References