SUPPLEMENTARY INFORMATION

FOR

Catalytic Properties of Group 4 Transition Metal Dichalcogenides (MX$_2$; M = Ti, Zr, Hf; X = S, Se, Te)

Rou Jun Toh,a Zdenek Soferb and Martin Pumeraa*

aDivision of Chemistry & Biological Chemistry School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore.

bDepartment of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
Figure S1. Scanning electron micrographs and corresponding energy-dispersive X-ray maps of group 4 TMDs. Scale bars represent 10 μm.
Figure S2. Elemental compositions of group 4 TMD materials based on energy-dispersive X-ray spectroscopy.

<table>
<thead>
<tr>
<th>Material</th>
<th>Ti at. %</th>
<th>Zr at. %</th>
<th>Hf at. %</th>
<th>S at. %</th>
<th>Se at. %</th>
<th>Te at. %</th>
<th>C at. %</th>
<th>O at. %</th>
<th>Al at. %</th>
<th>Si at. %</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiS₂</td>
<td>27.19</td>
<td>-</td>
<td>41.07</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>14.23</td>
<td>16.95</td>
<td>0.32</td>
<td>0.24</td>
</tr>
<tr>
<td>ZrS₂</td>
<td>- 27.00</td>
<td>29.47</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>28.70</td>
<td>14.43</td>
<td>0.39</td>
<td>-</td>
</tr>
<tr>
<td>HfS₂</td>
<td>-</td>
<td>-</td>
<td>20.22</td>
<td>15.76</td>
<td>-</td>
<td>-</td>
<td>23.06</td>
<td>40.97</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TiSe₂</td>
<td>17.06</td>
<td>-</td>
<td>-</td>
<td>25.55</td>
<td>-</td>
<td>19.21</td>
<td>36.36</td>
<td>-</td>
<td>1.82</td>
<td></td>
</tr>
<tr>
<td>ZrSe₂</td>
<td>- 9.91</td>
<td>-</td>
<td>21.40</td>
<td>-</td>
<td>50.94</td>
<td>17.75</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HfSe₂</td>
<td>-</td>
<td>-</td>
<td>10.34</td>
<td>20.61</td>
<td>-</td>
<td>47.35</td>
<td>21.70</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>TiTe₂</td>
<td>23.30</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>34.65</td>
<td>-</td>
<td>41.08</td>
<td>0.98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZrTe₂</td>
<td>- 12.66</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>30.30</td>
<td>19.15</td>
<td>37.88</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HfTe₂</td>
<td>-</td>
<td>-</td>
<td>11.25</td>
<td>-</td>
<td>25.34</td>
<td>23.96</td>
<td>39.45</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure S3. Tabulated chalcogen-to-metal ratios of group 4 TMD materials before and electrochemical treatments based on high resolution X-ray photoelectron spectroscopy.
Figure S4. The effect of electrochemical treatment on HER performance of TiS\(_2\). (a) Linear sweep voltammograms for HER in acidic electrolyte on TiS\(_2\) (black line), TiS\(_2\) after -1.5 V treatment (red line) and TiS\(_2\) after +0.7 V treatment (blue line) deposited on a GC electrode. Presented in the bar charts are the averages of the (b) overpotential at -10 mA cm\(^{-2}\) current density, (c) Tafel slopes and (d) HER onset potential, with their corresponding error bars for bare GC and TiS\(_2\) before and after electrochemical treatment.

Figure S5. The effect of electrochemical treatment on HER performance of ZrS\(_2\). (a) Linear sweep voltammograms for HER in acidic electrolyte on ZrS\(_2\) (black line) and ZrS\(_2\) after -1.1 V treatment (red line) deposited on a GC electrode. Presented in the bar charts are the averages of the (b) overpotential at -10 mA cm\(^{-2}\) current density, (c) Tafel slopes and (d) HER onset potential, with their corresponding error bars for bare GC and ZrS\(_2\) before and after electrochemical treatment.
Figure S6. The effect of electrochemical treatment on HER performance of TiSe$_2$. (a) Linear sweep voltammograms for HER in acidic electrolyte on TiSe$_2$ (black line), TiSe$_2$ after -1.6 V treatment (red line) and TiSe$_2$ after +1.5 V treatment (blue line) deposited on a GC electrode. Presented in the bar charts are the averages of the (b) overpotential at -10 mA cm$^{-2}$ current density, (c) Tafel slopes and (d) HER onset potential, with their corresponding error bars for bare GC and TiSe$_2$ before and after electrochemical treatment.

Figure S7. The effect of electrochemical treatment on HER performance of ZrSe$_2$. (a) Linear sweep voltammograms for HER in acidic electrolyte on ZrSe$_2$ (black line), ZrSe$_2$ after -1.25 V treatment (red line) and ZrSe$_2$ after +1.5 V treatment (blue line) deposited on a GC electrode. Presented in the bar charts are the averages of the (b) overpotential at -10 mA cm$^{-2}$ current density, (c) Tafel slopes and (d) HER onset potential, with their corresponding error bars for bare GC and ZrSe$_2$ before and after electrochemical treatment.
Figure S8. The effect of electrochemical treatment on HER performance of HfSe$_2$. (a) Linear sweep voltammograms for HER in acidic electrolyte on HfSe$_2$ (black line), HfSe$_2$ after -1.25 V treatment (red line) and HfSe$_2$ after +1.5 V treatment (blue line) deposited on a GC electrode. Presented in the bar charts are the averages of the (b) overpotential at -10 mA cm$^{-2}$ current density, (c) Tafel slopes and (d) HER onset potential, with their corresponding error bars for bare GC and HfSe$_2$ before and after electrochemical treatment.

Figure S9. The effect of electrochemical treatment on HER performance of TiTe$_2$. (a) Linear sweep voltammograms for HER in acidic electrolyte on TiTe$_2$ (black line), TiTe$_2$ after -1.6 V treatment (red line) and TiTe$_2$ after +1.1 V treatment (blue line) deposited on a GC electrode. Presented in the bar charts are the averages of the (b) overpotential at -10 mA cm$^{-2}$ current density, (c) Tafel slopes and (d) HER onset potential, with their corresponding error bars for bare GC and TiTe$_2$ before and after electrochemical treatment.
Figure S10. The effect of electrochemical treatment on HER performance of ZrTe$_2$. (a) Linear sweep voltammograms for HER in acidic electrolyte on ZrTe$_2$ (black line), ZrTe$_2$ after -1.6 V treatment (red line) and ZrTe$_2$ after +1.1 V treatment (blue line) deposited on a GC electrode. Presented in the bar charts are the averages of the (b) overpotential at -10 mA cm$^{-2}$ current density, (c) Tafel slopes and (d) HER onset potential, with their corresponding error bars for bare GC and ZrTe$_2$ before and after electrochemical treatment.

Figure S11. The effect of electrochemical treatment on HER performance of HfTe$_2$. (a) Linear sweep voltammograms for HER in acidic electrolyte on HfTe$_2$ (black line), HfTe$_2$ after -1.6 V treatment (red line) and HfTe$_2$ after +1.1 V treatment (blue line) deposited on a GC electrode. Presented in the bar charts are the averages of the (b) overpotential at -10 mA cm$^{-2}$ current density, (c) Tafel slopes and (d) HER onset potential, with their corresponding error bars for bare GC and HfTe$_2$ before and after electrochemical treatment.