Electronic Supporting Information

Improved electro-grafting of nitropyrene onto onion-like carbon via

\textit{in situ} electrochemical reduction and polymerization: Tailoring

redox energy density of the supercapacitor positive electrode

Bihag Anothumakkool\textsuperscript{1}, Yuman Sayed-Ahmad-Baraza\textsuperscript{1}, Chris Ewels\textsuperscript{1}, Pierre-Louis Taberna\textsuperscript{2}, Barbara Daffos\textsuperscript{2}, Patrice Simon\textsuperscript{2}, Thierry Brousse*\textsuperscript{1} and Joel Gaubicher\textsuperscript{1}* 

\textsuperscript{1}Institut des Materiaux Jean Rouxel (IMN), University of Nantes, CNRS, 2, rue de Houssiniere-B.P. 32229-44322 Nantes cedex 3-France

\textsuperscript{2}Universite Paul Sabatier, Cirimat/Lcmie, 31062 Toulouse cedex 9 – France,
Figure S1: Open circuit potential (OCP) of YP-80 electrode in LP-30 and b) OCP of OLC electrode in 1M TEABF$_4$/Acetonitrile and further after the introduction of 2mM Pyr-NO2.

Figure S2: Adsorption of Pyrene and derivatives onto carbon onion; in all cases the concentration was 0.25 mM in LP-30
Figure S3: Initial CV profile at a scan rate of 5 mV/s in LP-30 containing 2 mM Pyr-NO₂ and Pyr-NH₂. Different electrochemical process and their corresponding peaks are indicated in the inset of figure.

Figure S4: N1S XPS spectra of a) 1-nitropyrene and b) 1-aminopyrene
Table S1. N1S core level XPS details of OLC/PPyrNO2

<table>
<thead>
<tr>
<th>Peak name</th>
<th>Position</th>
<th>Full width Half maximum (FWHM)</th>
<th>% area</th>
</tr>
</thead>
<tbody>
<tr>
<td>-NH₂</td>
<td>400.4</td>
<td>2.52</td>
<td>79.8</td>
</tr>
<tr>
<td>-NHOH</td>
<td>402.2</td>
<td>2.55</td>
<td>20.2</td>
</tr>
</tbody>
</table>

Figure S5: CV profile of OLC in comparison to two different commercial porous carbon electrode at a scan rate of 5 mV/s in LP-30 containing 2 mM Pyr-NO₂.
Figure S6: CV profile at a scan rate of 5 mV/s in LP-30 containing 2 mM Pyr-NO₂ derivative after electropolymerisation for 800 cycles in 2-4.4 V (red) and 3-4.4 V (green) window in comparison to bare carbon onion (black).

Figure S7: N1S core XPS spectra of PPyr-NO₂-coated OLC after cycling in a potential window of 2-4.4 V.
Figure S8: Nyquist plot from the EIS spectra

Figure S9: Areal current Vs voltage profile of OLC-PyrNO₂ in comparison to PyrNO₂ deposited onto current collector and pure current collector.
Figure S10: a) Plot of cell potential vs. relaxation time after charging to 4.4 V vs. Li⁺/Li and b) change in the capacity due to the leakage loss during the relaxation time for 10 hour.