Balancing the galvanic replacement and reduction kinetics for the general formation of bimetallic CuM (M = Ru, Rh, Pd, Os, Ir, Pt) hollow nanostructures

Lin Han, Pengfei Wang, Hui Liu, Qiangqiang Tan and Jun Yang

State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China 100190. Tel: 86-10-8254 4915; Fax: 86-10-8254 4915; E-mail: jyang@ipe.ac.cn

University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China

Center for Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China

Financial support from the National Natural Science Foundation of China (Grant No.: 21376247, 21506225, 21573240), Center for Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences (COM2015A001), and the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No.: KGCX2-YW-341) is gratefully acknowledged.
Fig. S1 TEM image (a) and HRTEM images (b) of the Cu nanoparticles synthesized in oleylamine at 180°C, which are used as seeds for the formation of bimetallic hollow nanostructures in a galvanic replacement reaction at appropriate temperatures.

Fig. S2 Elemental mapping of a single particle (a–d) of the bimetallic Cu-Pt hollow nanostructures synthesized in oleylamine at a temperature of 160°C.
Fig. S3 EDX-based element profiles of bimetallic CuPt nanoparticles as-prepared by reacting Pt$^{4+}$ ions with the Cu seeds in oleylamine at temperature of 220°C.

Fig. S4 TEM image (a), HRTEM image (b), and EDX-based element profiles (c) of bimetallic CuPt nanoparticles as-prepared by reacting Pt$^{4+}$ ions with the Cu seeds in oleylamine at temperature of 250°C.
Fig. S5 TEM images (a₁), elemental mappings (a₂—a₅), and STEM-EDX analyses (a₆) of binary CuOs nanostructures synthesized by GRR between Cu seeds and Os ion precursors in oleylamine at temperature of 245°C. Inserts in (a₁) is HRTEM images of the a single CuOs nanostructure.

Fig. S6 TEM images carbon-supported hCuPtNSs prepared at temperature of 120°C (a) and 160°C (b) in oleylamine.
Fig. S7 Cyclic voltammograms of hCuPtNSs-120/C, hCuPtNSs-160/C, and E-TEK Pt/C catalysts in argon-purged HClO₄ (0.1 M) at room temperature obtained with scan rate of 50 mV s⁻¹.

Fig. S8 TEM images of as-prepared hCuRuNSs (a) and hCuO-RuO₂/CNT (b) supported on the surface of carbon nanotube substrates.