Supporting Information Contents

Heterotriangulene-based unsymmetrical squaraine dyes: synergistic effects of donor moiety and out-of-plane branched alkyl chains on dye cell performance

Neeta Karjule†,‡, Munavvar Fairoos MK† and Jayaraj Nithyanandhan*†,‡

†Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, CSIR-Network of Institutes for Solar Energy, Dr. Homi Bhaba Road, Pune, India-411008.
‡Academy of Scientific and Innovative Research, New Delhi 110025, India.

To whom correspondence should be addressed: j.nithyanandhan@ncl.res.in

CONTENTS

- NMR and Mass data
- Theoretical calculations
- Supplementary photovoltaic performance
- Supplementary references
Figure S1. 1H NMR (400 MHz, CDCl$_3$) spectrum of compound 1a.

Figure S2. 1H NMR (200 MHz, CDCl$_3$) spectrum of compound 1b.
Figure S3. ^{13}C NMR (100 MHz, CDCl$_3$) spectrum of compound 1b.

Figure S4. ^1H NMR (200 MHz, CDCl$_3$) spectrum of compound 1c.
Figure S5. 13C NMR (100 MHz, CDCl$_3$) spectrum of compound 1c.

e S6. HRMS spectrum of 1c.
Figure S7. 1H NMR (200 MHz, CDCl$_3$) spectrum of compound 2a.

Figure S8. 13C NMR (100 MHz, CDCl$_3$) spectrum of compound 2a.
Figure S9. HRMS spectrum of 2a.

Figure S10. 3H NMR (400 MHz, CDCl$_3$) spectrum of compound 2b.
Figure S11. 13C NMR (100 MHz, CDCl$_3$) spectrum of compound 2b.

Figure S12. HRMS spectrum of 2b.
Figure S13. 1H NMR (400 MHz, DMSO-d_6) spectrum of compound 3a.

Figure S14. 13C NMR (100 MHz, DMSO-d_6) spectrum of compound 3a.
Figure S15. HRMS spectrum of 3a.

Figure S16. 1H NMR (200 MHz, DMSO-d_6) spectrum of compound 3b.
Figure S17. 13C NMR (100 MHz, DMSO-d_6) spectrum of compound 3b.

Figure S18. HRMS spectrum of 3b.
Figure S19. 1H NMR (200 MHz, CDCl$_3$) spectrum of compound 3-decyl-1-hexyl-3-methyl-2-methyleneindoline-5-carboxylic acid.
Figure S20. 1H NMR (500 MHz, CDCl$_3$) spectrum of compound 3c.

Figure S21. 13C NMR (100 MHz, CDCl$_3$) spectrum of compound 3c.
Figure S22. HRMS spectrum of 3c.

Figure S23. 1H NMR (200 MHz, CDCl$_3$) spectrum of compound 4b.
Figure S24. 13C NMR (100 MHz, CDCl$_3$) spectrum of compound 4b.

Figure S25. HRMS spectrum of 4b.
Figure S26. 1H NMR (400 MHz, CDCl$_3$) spectrum of compound 4c.

Figure S27. 13C NMR (100 MHz, CDCl$_3$) spectrum of compound 4c.
Figure S28. HRMS spectrum of 4c.

Figure S29. 1H NMR (200 MHz, DMSO-d_6) spectrum of compound NSQ1.
Figure S30. 13C NMR (100 MHz, DMSO-d_6) spectrum of compound NSQ1.

Figure S31. HRMS spectrum of NSQ1.
Figure S32. 1H NMR (400 MHz, DMSO-d_6) spectrum of compound NSQ2.

Figure S33. 13C NMR (100 MHz, DMSO-d_6) spectrum of compound NSQ2.
Figure S34. HRMS spectrum of NSQ2.

Figure S35. 1H NMR (400 MHz, CDCl$_3$) spectrum of compound NSQ3.
Figure S36. 13C NMR (100 MHz, CDCl$_3$) spectrum of compound NSQ3.

Figure S37. HRMS spectrum of NSQ3.
Figure S38. 1H NMR (500 MHz, CDCl$_3$) spectrum of compound 5b.

Figure S39. 13C NMR (100 MHz, CDCl$_3$) spectrum of compound 5b.
Figure S40. HRMS spectrum of 5b.

Figure S41. 1H NMR (400 MHz, CDCl$_3$) spectrum of compound 5c.
Figure S42. 13C (100 MHz, CDCl$_3$) spectrum of compound 5c.

Figure S43. HRMS spectrum of 5c.
Figure S44. 1H NMR (200 MHz, DMSO-d_6) spectrum of compound NSQR.

Figure S45. 13C NMR (100 MHz, CDCl$_3$) spectrum of compound NSQR.
Figure S46. HRMS spectrum of dye NSQR.

Theoretical calculations
Figure S47. Isodensity surface plots of the HOMO, HOMO-1, LUMO and LUMO+1 of NSQ sensitizers.51

Table S1. Selected dihedral angles of NSQs were calculated from the optimized ground state geometry

<table>
<thead>
<tr>
<th>NSQ Dyes</th>
<th>θ_1</th>
<th>θ_2</th>
<th>θ_3</th>
<th>θ_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSQR</td>
<td>47.06</td>
<td>-0.33</td>
<td>-178.08</td>
<td>-</td>
</tr>
<tr>
<td>NSQ1</td>
<td>-0.05</td>
<td>0.05</td>
<td>-179.6</td>
<td>-</td>
</tr>
<tr>
<td>NSQ2</td>
<td>-0.43</td>
<td>0.57</td>
<td>-177.65</td>
<td>-</td>
</tr>
<tr>
<td>NSQ3</td>
<td>0.61</td>
<td>-0.24</td>
<td>-178.57</td>
<td>-176.66</td>
</tr>
</tbody>
</table>
Figure S48. Distance between sp3-C (methyl group of HT) to –O atom of carboxylic acid, distance between the terminal carbon atomes of sp3-branched alkyl chain and sp3-C (indoline) to –O atom of carboxylic acid of NSQ3 calculated from the optimized ground state geometry using density functional theory (DFT) at B3LYP/6-31G** level with the Gaussian 09 program.

Supplementary photovoltaic performance
Figure S49. J–V characteristics of NSQR and NSQ1-3 with deviation of 5 cells measured under simulated AM 1.5 G simulated sunlight (100 mW cm$^{-2}$).
Table S2. Photovoltaic performance of NSQ3 with different ratios of CDCA.

<table>
<thead>
<tr>
<th>Dye</th>
<th>V_{oc} (V)</th>
<th>J_{sc} (mA/cm2)</th>
<th>ff (%)</th>
<th>η (%)</th>
<th>Amount of adsorbed dyes ($\times 10^{-7}$ mol cm$^{-2}$)a</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSQ3/CDCA (1 eqv.)</td>
<td>0.541</td>
<td>20.11</td>
<td>65.6</td>
<td>7.14</td>
<td>0.94</td>
</tr>
<tr>
<td>NSQ3/CDCA (3 eqv.)</td>
<td>0.544</td>
<td>20.01</td>
<td>64.1</td>
<td>6.99</td>
<td>0.76</td>
</tr>
<tr>
<td>NSQ3/CDCA (5 eqv.)</td>
<td>0.541</td>
<td>19.51</td>
<td>63.2</td>
<td>6.67</td>
<td>0.64</td>
</tr>
<tr>
<td>NSQ3/CDCA (10 eqv.)</td>
<td>0.550</td>
<td>14.28</td>
<td>69.4</td>
<td>5.45</td>
<td>0.32</td>
</tr>
</tbody>
</table>

aby dye desorption method, carried out in 2M ethanolic HCl.

Figure S50. UV-Vis absorption spectra of desorbed NSQR and NSQ1-3 dyes in 2 M HCl in EtOH.
Figure S51. (a) Bode plot of NSQ dye cells (with an applied potential of -0.5 V), and (b) C_u as a function of voltage (with an applied potential of -0.3 V).

Supplementary references