Supplementary Information

Origin of fullerene-induced vitrification of fullerene:donor polymer photovoltaic blends and its impact on solar cell performance

Paul Westacott,¹ Neil D. Treat,¹ Jaime Martin,¹ James H. Bannock,² John C. de Mello,² Michael Chabinyc,³ Alexander B. Sieval,⁴ Jasper J. Michels⁵* and Natalie Stingelin¹*

¹Department of Materials and Centre for Plastic Electronics, Imperial College London, London, SW7 2AZ, UK
²Department of Chemistry and Centre for Plastic Electronics, Imperial College London, London, SW7 2AZ, UK
³Materials Research Laboratory, University of California Santa Barbara, CA 93106, USA
⁴Solenne BV, Zernikepark 6, 69747AN Groningen, The Netherlands
⁵Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz

e-mail: natalie.stingelin@imperial.ac.uk / michels@mpip-mainz.mpg.de

Figure S1. Thermal behaviour of PCE11 (i.e. PffBT4T-2OD), [60]PCBM and a 1:1 blend of them. Here, as systems were drop-cast at 25 °C, a noticeable cold crystallisation exotherm is observed for the binary also in this scenario, while such an exothermic feature is again missing in the neat components.