Pt-like electrocatalytic behavior of Ru-MoO$_2$ nanocomposites for hydrogen evolution reaction

Peng Jiang1†, Yang Yang1†, Ruohong Shi1, Guoliang Xia1, Jitang Chen1, Jianwei Su1, and Qianwang Chen1. $^2∗$

1Hefei National Laboratory for Physical Science at Microscale, Department of Materials Science & Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, University of Science and Technology of China, Hefei 230026, China. 2High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China. †These authors contributed equally to this work. $^∗$Correspondence and requests for materials should be addressed to Q.C. (email: cqw@ustc.edu.cn).

Calculation details:

Computations of free-energy for the hydrogen evolution reaction (HER) were carried out using density-functional theory as implemented in VASP 5.2. The PW91 GGA functional and the projector augmented wave (PAW) technique were used to treat the exchange-correlation energy and the ion-electron interaction. For geometric optimization, both lattice constants and atomic positions were relaxed until the forces on atoms were less than 0.02 eV Å$^{-1}$ and the total energy change was less than 1.0×10^{-5} eV. The Brillouin zone was sampled using k-points with 5*5*1 grid in the Monkhorst-Pack scheme for geometry optimization.

During the optimization, the bottom layer of model was fixed and the cut-off energy for plane waves is 400 eV. The hydrogen binding energy ΔE_H was calculated by $\Delta E_H = E_{H@slab} - E_{slab} - 1/2$.
The free energies at 298.15 K were obtained using $\Delta G = \Delta E_{\text{H}} + \Delta ZPE - T \Delta S$ according to previous work where $\Delta ZPE - T \Delta S = 0.24 \text{eV}$ for model of metal and metal oxide surface. ΔE_{H} is the hydrogen binding energy, ΔZPE, ΔS and U are the zero point energy changes, entropy changes, respectively.

Results and Discussion

Figure S1 (a) SEM image of Mo$_3$(btc)$_2$, (b) SEM image of S-2-MOF, (c) Ru 3p XPS spectra of S-2-MOF.

Figure S2 XRD patterns of Mo-btc (a), S-0-MOF (b, red line) and S-2-MOF (b, blue line).
Figure S3 XRD diffraction patterns of S-0 (a) and MoC@GS (b).

Figure S4 XRD patterns of the S-0-MOF after annealing at 700°C for 3h and 4h in nitrogen atmosphere.
The formation mechanism of MoO$_x$/MoC$_x$ by carburization of polyoxometalate-based metal-organic frameworks (POMOFs, NENU-5) has been explained by previous studies. Actually, the decomposition of phosphomolybdic acid (PMo$_{12}$) occurs at the temperature below 500°C, meanwhile, MoO$_3$ is formed. As the temperature increase, oxygen molecules were removed by combining with the pyrolysis carbon to form carbon dioxide (CO$_2$). At the same time, Mo (VI) turns into Mo (IV) and MoO$_3$ is reduced to MoO$_2$ which is relatively stable at the high temperature. However, with the carbonizing temperature as well as time increased, Mo$_2$C could be formed. Similarly, in this work, during the carburization process, the organic ligands (btc3-) of precursor played two important roles: a) combining with the oxygen in the mixtures to form CO$_2$ gas and b) acting as carbon source to form MoO$_x$ and MoC$_x$. As illustrated in Figure S4, MoO$_2$ could be obtained at 700 °C for 3 h. While increasing the carbonizing time to 4h, the main diffraction peaks can be indexed to MoO$_2$ and MoC (JCPDS no. 89-4305). Besides, we can only get MoC if the carbonizing time increased to 5h (Figure S5). Therefore, the carburizing time is an important factor.
that would affect the formation of final product.

Figure S6 HRTEM image of S-1.

Figure S7 TEM image of S-1.
Figure S8 (a) TEM image and EDX line-scanning analysis of S-1, (b-d) Elemental mapping of Mo, Ru and O.

Table S1 Comparision of Ru concentration from ICP-OES results for S-1, S-2 and S-4.

<table>
<thead>
<tr>
<th>Samples</th>
<th>S-1</th>
<th>S-2</th>
<th>S-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ru:Mo (molar ratio)</td>
<td>0.105</td>
<td>0.244</td>
<td>0.682</td>
</tr>
</tbody>
</table>

Figure S9 SEM (a) and TEM (b) images of S-2 electrocatalyst after 1000 cycles in acid solution.
Figure S10 XRD patterns of S-2 catalyst before and after 1000 cycles in N₂-saturated 0.5 M H₂SO₄.

Figure S11 HER polarization curves of catalysts in 1 M KOH solution.
Figure S12 Hydrogen production efficiency of Pt/C and S-2 in 1M KOH under the same conditions.

Figure S13 Current–time plots of S-2 electrode.
Figure S14 Current–time plots of the commercial 20 wt. % Pt/C electrode.

Figure S15 HER polarization curves of catalysts in 0.5 M phosphate buffer (pH=7).
Figure S16 XPS survey scan of obtained S-2 sample.

Table S2 Atomic ratios of different elements in obtained S-2 sample estimated from XPS analysis.

<table>
<thead>
<tr>
<th>Element</th>
<th>Mo 3d</th>
<th>Ru 3d</th>
<th>O 1s</th>
<th>C 1s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ratio (%)</td>
<td>15.74</td>
<td>8.09</td>
<td>49.06</td>
<td>27.11</td>
</tr>
</tbody>
</table>

REFERENCES

 Angew Chem Int Edit, 2015, **54**, 12928-12932.