A two-volt aqueous supercapacitor from porous dehalogenated carbon

Lin Wang,a,† Guoxin Zhang,a,† Biao Han,a Yingna Chang,a Haoyuan Li,a Jindi Wang,a Cejun Hu,b Zheng Chang,a Ziyang Huo,d,* and Xiaoming Suna,b,c,*

a. State Key Laboratory of Chemical Resource Engineering, b. College of energy, and c. Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China. d, Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan Queensland 4111, Australia

† These authors contributed equally to this work.

*E-mail: sunxm@mail.buct.edu.cn and ziyanghuo@gmail.com
Supporting figures and captions

Figure S1. XRD profile of unwashed NDPC-8 with reference to standard lines of NaF. (JCPDF No#36-1455)

Figure S2. (a) SEM and (b) TEM images of NDPC-6. (c) SEM and (d) TEM images of NDPC-7
Figure S3. (a) SEM and (b) TEM images of O-PC-8, (c) SEM and (d) TEM images of N-PC-8.

Figure S4. (a) XRD profiles and (b) Raman spectra of NDPC-6/7, N-PC-8, and O-PC-8.
Figure S5. Element mapping of N-PC-8: (a) SEM image, element (b) C, (c) O, and (d) N.

Figure S6. Hydrogen and oxygen evolution reaction performance of NDPC-6/7/8, N-PC-8, and O-PC-8 measured in (a/c) 0.5 M H$_2$SO$_4$, and (b/d) 0.1 M KOH, respectively. Panel (c) and (d) were the enlarged views of (a) and (b), respectively.
Figure S7. (a) EIS spectra of NDPC-6/7/8, N-PC-8, and O-PC-8, panel (b) is the enlarged view of the high-frequency region of (a).

Figure S8. CV profiles of NDPC-(a) 6/ (b) 7, (c) N-PC-8, and (d) O-PC-8 with different given open circuit voltage, CV scanning rate was all set as 100.0 mV/s.
Figure S9. GCD profiles of NDPC-(a) 6/ (b) 7, (c) N-PC-8, and (d) O-PC-8.

Figure S10. GCD profiles of NDPC samples, O-PC-8, and N-PC-8 after 5000 cycles of charge/discharge at 5.0 A/g.