Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary Information (ESI) for *Journal of Materials Chemistry A* This journal is © The Royal Society of Chemistry 2017

## Pore modulation of metal–organic frameworks towards enhanced hydrothermal stability and acetylene uptake *via* incorporating different functional brackets

Di-Ming Chen, Nan-Nan Zhang, Jia-Yue Tian, Chun-Sen Liu\* and Miao Du\*

Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, Henan, P. R. China

Author for correspondence: chunsenliu@zzuli.edu.cn; dumiao@zzuli.edu.cn



Fig. S1 View of the three-connected bracket in (left) 1 and (right) 2.



Fig. S2 View of the trigonal bipyrimidal nanocage in (left) 1 and (right) 2.



**Fig. S3** Connolly surface for (left) [Co<sub>2</sub>(ina)<sub>3</sub>(H<sub>2</sub>O)<sub>2</sub>]<sup>+</sup> and (right) tpt brackets.



Fig. S4 TGA curves for 1, 1a, 2 and 2a.



Fig. S5 VT-PXRD patterns for (left) 1 and (right) 2.



Fig. S6 PXRD patterns for (left) 1 and (right) 2 under different conditions.



Fig. S7 The time-dependent photographs for 1 (purple crystals) and 2 (orange crystals) soaked in water.



Fig. S8 Pore size distribution of 1a and 2a derived from N<sub>2</sub> sorption at 77 K using Horvath-Kawazoe method.

## Calculation of sorption heat for CO2 and C2H2 uptake using virial fitting

$$\ln P = \ln N + 1/T \sum_{i=0}^{m} a_i N^i + \sum_{i=0}^{n} b_i N^i \qquad \qquad Q_{\rm st} = -R \sum_{i=0}^{m} a_i N^i$$

The above virial expression was used to fit the combined isotherm data for **1a** and **2a** at 273 and 298 K, where *P* is pressure, *N* is adsorbed amount, *T* is temperature,  $a_i$  and  $b_i$  are virial coefficients, and *m* and *N* are number of coefficients used to describe the isotherms.  $Q_{st}$  is the coverage-dependent enthalpy of adsorption and *R* is the universal gas constant.



Fig. S9 CO<sub>2</sub> sorption heats for 1a and 2a.



Fig. S10 C<sub>2</sub>H<sub>2</sub> sorption isotherms for 2a before and after water treatment.



Fig. S11 Snapshots of CO<sub>2</sub> adsorption from GCMC simulations at various pressures

for (left) 1a and (right) 2a.



Fig. S12 Probability distribution of the C<sub>2</sub>H<sub>2</sub> center of mass in (up) 1a and (down) 2a obtained from GCMC simulation at 298 K and 1 bar. The blue regions represent the places where C<sub>2</sub>H<sub>2</sub> molecules are populated in the framework.

|                                             | 1                              | 2                                 |
|---------------------------------------------|--------------------------------|-----------------------------------|
| Empirical formula                           | $C_{42}H_{24}Co_5N_{15}O_{15}$ | C44H32C03N19O7                    |
| Formula weight                              | 1273.41                        | 1115.67                           |
| Temperature/K                               | 293(2)                         | 293(2)                            |
| Crystal system                              | hexagonal                      | hexagonal                         |
| Space group                                 | P6 <sub>3</sub> /mmc           | P6 <sub>3</sub> /mmc              |
| <i>a</i> / Å                                | 18.8605(4)                     | 16.7919(10)                       |
| <i>b</i> / Å                                | 18.8605(4)                     | 16.7919(10)                       |
| <i>c</i> / Å                                | 16.6183(4)                     | 18.9208(13)                       |
| α / °                                       | 90                             | 90                                |
| eta / °                                     | 90                             | 90                                |
| γ / °                                       | 120                            | 120                               |
| Volume / Å <sup>3</sup>                     | 5119.5(3)                      | 4620.3(7)                         |
| Ζ                                           | 2                              | 2                                 |
| $ ho_{ m calc}$ / g cm <sup>-3</sup>        | 0.826                          | 0.802                             |
| $\mu$ / mm <sup>-1</sup>                    | 6.561                          | 4.484                             |
| Goodness-of-fit on $F^2$                    | 1.106                          | 1.157                             |
| Final <i>R</i> indexes $[I \ge 2\sigma(I)]$ | $R_1 = 0.0968, wR_2 = 0.2788$  | $R_1 = 0.0518$ , w $R_2 = 0.1636$ |
| Final R indexes [all data]                  | $R_1 = 0.0987, wR_2 = 0.2881$  | $R_1 = 0.0532, wR_2 = 0.1651$     |
|                                             |                                |                                   |

 Table S1. Crystal data and structural refinement for 1 and 2.