Supplementary Information

Three-Dimensional Porous MoNi₄ Networks Constructed by Nanosheets as Bifunctional Electrocatalysts for Overall Water Splitting

Yanshuo Jinᵃ, Xin Yueᵃ, Chang Shuᵃ, Shangli Huangᵇ, Pei Kang Shenᵃᵇ,*

ᵃState Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
ᵇCollaborative Innovation Center of Sustainable Energy Materials, Guangxi University, Nanning 530004, P. R. China

*E-mail: stsspk@mail.sysu.edu.cn
Table S1. HER, OER and overall water splitting activities of the porous MoNi₄ networks and reported catalysts.

<table>
<thead>
<tr>
<th>Catalyst (mass loading)</th>
<th>Electrolyte</th>
<th>HER Potential vs. RHE (V) @ 10 mA cm<sup>-2</sup></th>
<th>OER Potential vs. RHE (V) @ 10 mA cm<sup>-2</sup></th>
<th>Overall Water Splitting Potential (V) @ 10 mA cm<sup>-2</sup></th>
<th>Overall Water Splitting Onset Potential (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>porous MoNi<sub>4</sub> networks (~1.09 mg/cm<sup>2</sup>)</td>
<td>1 M KOH</td>
<td>-0.028</td>
<td>1.51</td>
<td>1.58</td>
<td>1.45<sup>this work</sup></td>
</tr>
<tr>
<td>NiCo<sub>2</sub>O<sub>4</sub> hollow microcuboids<sup>[1]</sup> (~1 mg/cm<sup>2</sup>)</td>
<td>1 M KOH</td>
<td>-0.110</td>
<td>1.52</td>
<td>1.65</td>
<td></td>
</tr>
<tr>
<td>NiSe nanowire film/Ni foam<sup>[2]</sup> (2.8 mg/cm<sup>2</sup>)</td>
<td>1 M KOH</td>
<td>-0.096</td>
<td></td>
<td>1.63</td>
<td>~1.5</td>
</tr>
<tr>
<td>Ni<sub>3</sub>P<sub>4</sub> Films/Ni foil<sup>[3]</sup> (~3.5 mg/cm<sup>2</sup>)</td>
<td>1 M KOH</td>
<td>-0.15</td>
<td>1.56</td>
<td><1.7</td>
<td>~1.53</td>
</tr>
<tr>
<td>Ni<sub>2</sub>P nanoparticles<sup>[4]</sup> (0.14 mg/cm<sup>2</sup>)</td>
<td>1 M KOH</td>
<td></td>
<td>1.52</td>
<td>1.63</td>
<td>~1.5</td>
</tr>
<tr>
<td>Co-P films/Cu foil<sup>[5]</sup> (2.71 mg/cm<sup>2</sup>)</td>
<td>1 M KOH</td>
<td>-0.094</td>
<td>1.575</td>
<td>1.64</td>
<td>1.57</td>
</tr>
<tr>
<td>Porous Cobalt-Based Thin Film<sup>[6]</sup> (~0.1 mg/cm<sup>2</sup>)</td>
<td>1 M KOH</td>
<td>-0.38</td>
<td></td>
<td>1.53</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.5 M H<sub>2</sub>SO<sub>4</sub></td>
<td></td>
<td>-0.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni<sub>3</sub>S<sub>2</sub> Nanosheet Arrays /Ni foam<sup>[7]</sup> (~1.6 mg/cm<sup>2</sup>)</td>
<td>1 M KOH</td>
<td>~0.22</td>
<td>~1.49</td>
<td>~1.76(@ ~13 mA cm<sup>-2</sup>)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>neutral media</td>
<td></td>
<td>~0.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NiFeOₓ/CFP after two lithium galvanostatic cycles[8] (−1.6 mg/cm²)</td>
<td>1M KOH</td>
<td>-0.088</td>
<td>1.46</td>
<td>1.55</td>
<td>~1.5</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.51 (increasing the mass loading)</td>
<td>-</td>
</tr>
</tbody>
</table>
Figure S1. SEM images of (a) nickel foam, (b) porous MoNi$_4$ networks annealed at 450°C at low magnification.

Figure S2. XRD patterns of nickel foam.
Figure S3. SEM images of Mo-Ni based precursors at different magnifications.

Figure S4. TEM images of Mo-Ni based precursors at different magnifications.
Figure S5. XRD patterns of the porous MoNi₄ networks annealed at 300°C, 450°C and 600°C.

Figure S6. Higher resolution SEM image of the porous MoNi₄ networks annealed at 450°C.

Figure S7. The corresponding energy dispersive X-ray (EDX) spectrum of porous MoNi₄ networks annealed at 450°C.
Figure S8. SEM images of porous MoNi₄ networks annealed at 300°C at different magnifications.

Figure S9. TEM images of porous MoNi₄ networks annealed at 300°C at different magnifications.
Figure S10. SEM images of porous MoNi$_4$ networks annealed at 600°C at different magnifications.

Figure S11. TEM images of porous MoNi$_4$ networks annealed at 600°C at different magnifications.
Figure S12. XPS spectra of the MoNi₄ networks annealed at different temperature. (a) Ni 2p peaks. (b) Mo 3d peaks.
Figure S13. SEM images of porous MoNi$_4$ networks annealed at 450°C after the HER stability test.

Figure S14. (a) TEM images and (b) the corresponding selected-area electron diffraction (SAED) pattern of porous MoNi$_4$ networks annealed at 450°C after the HER stability test.
Figure S15. SEM images of porous MoNi$_4$ networks annealed at 450°C after the OER stability test.

Figure S16. (a-c) TEM images and (d) the corresponding selected-area electron diffraction (SAED) pattern of the porous MoNi$_4$ networks annealed at 450°C after the OER stability test.
Figure S17. Dissolved quantity - time curves of Mo and Ni during OER.

Figure S18. XPS spectra (Ni 2p peaks) of the MoNi₄ networks annealed at different temperature after OER.
Figure S19. Electrochemically surface area measurements. The corresponding j_{geo} vs scan rates plots of the porous MoNi$_4$ networks annealed at 450°C.

Figure S20. The Nyquist plots of the porous MoNi$_4$ networks annealed at 450°C at (a) -100 mV vs. RHE and (b) 1.6 V vs. RHE. All of the potentials and voltages are without iR corrected.
References

