Supporting Information

Solvent engineering for forming Stonehenge-like PbI$_2$ nanostructure

towards efficient perovskite solar cells

Yongguang Tu, Jihuai Wu1, Xin He, Panfeng Guo, Tongyue Wu, Hui Luo, Quanzhen Liu, Kai Wang, Jianming Lin, Miaoliang Huang, Yunfang Huang, Zhang Lan, Sizhong Li

Engineering Research Center of Environment-Friendly Functional Materials for Ministry of Education, Key Laboratory of Functional Materials for Fujian Higher Education, College of Material Science and Engineering, Huaqiao University, Xiamen 361021, People’s Republic of China

Fig. S1 ~ Fig. S7

![XRD patterns of PbI$_2$ films prepared by high-vacuum treatment and IPA substitution.](image)

Fig. S1 XRD patterns of PbI$_2$ films prepared by high-vacuum treatment and IPA substitution.

![UV–Vis absorption spectra of the PbI$_2$ films prepared by different approaches.](image)

Fig. S2 UV–Vis absorption spectra of the PbI$_2$ films prepared by different approaches.

1 Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Institute of Materials Physical chemistry, Huaqiao University, Xiamen 361021, P. R. China. Fax: (+86) 595-22692229, E-mail: jhwu@hqu.edu.cn.
Fig. S3 PbI$_2$ film photographs. Prepared by a, anneal treatment; b, IPA substitution for 60 sec.

Fig. S4 a, Top-view SEM images of CH$_3$NH$_3$PbI$_3$ films; b, Cross-view SEM images of CH$_3$NH$_3$PbI$_3$ films (red region).

Fig. S5 Photographs of CH$_3$NH$_3$PbI$_3$ films prepared by IPA substitution.
Fig. S6 J-V curves of the perovskite solar cell based on IPA substitution for 60 s measured by reverse (open circuit → short circuit) and forward (short circuit → open circuit) scans under one sun illumination.

Fig. S7 The steady-state photocurrent and output PCE of the devices at the maximum power points.

Fig. S8 Distribution of the efficiencies from for perovskite solar cell based on anneal-treatment and IPA-60s (Each team is calculated from a batch of 50 cells).
Table S1 Fitting parameters for the time-resolved PL measurements shown in Fig. 6b.

<table>
<thead>
<tr>
<th>Sample</th>
<th>A_1</th>
<th>τ_1/ns</th>
<th>A_2</th>
<th>τ_2/ns</th>
<th>Average τ/ns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anneal</td>
<td>0.68</td>
<td>31.26</td>
<td>0.32</td>
<td>6.20</td>
<td>23.24</td>
</tr>
<tr>
<td>IPA-5s</td>
<td>0.53</td>
<td>26.68</td>
<td>0.47</td>
<td>8.48</td>
<td>18.13</td>
</tr>
<tr>
<td>IPA-20s</td>
<td>0.56</td>
<td>14.77</td>
<td>0.44</td>
<td>4.66</td>
<td>10.32</td>
</tr>
<tr>
<td>IPA-60s</td>
<td>0.67</td>
<td>12.75</td>
<td>0.33</td>
<td>3.38</td>
<td>9.66</td>
</tr>
<tr>
<td>IPA-100s</td>
<td>0.47</td>
<td>23.36</td>
<td>0.53</td>
<td>5.31</td>
<td>13.79</td>
</tr>
</tbody>
</table>