Supplementary Information

Au-Pd bimetallic nanoparticles anchored on α-Fe$_2$O$_3$ nonenzymatic hybrid nanoelectrocatalyst for simultaneous electrochemical detection of dopamine and uric acid in the presence of ascorbic acid

C.Sumathi, C. Venkateswara Raju, P.Muthukumaran, J.Wilson, G.Ravi
Figure S1. UV visible spectra of (A) α–Fe$_2$O$_3$ (B) α–Fe$_2$O$_3$ /Au-Pd hybrid nanostructure

Figure S2. 1mM of (a) Ascorbic acid, (b) Dopamine (c) Uric acid in PBS (pH 7) for the α–Fe$_2$O$_3$ /Au-Pd hybrid modified electrode
Figure S3. CVs obtained for (1mM) PBS at a 50 mV s\(^{-1}\) with addition 25 µM of Methylene blue at a (A) bare (B) \(\alpha\)-Fe\(_2\)O\(_3\) (C) Au-Pd (D) \(\alpha\)-Fe\(_2\)O\(_3\).Au-Pd hybrid at a potential between -0.3 and 0.2 V (pH 7).
Figure S4. (A) CV studies recorded at different scan rate from (10 – 100 mVs\(^{-1}\)) (a) Bare GC (b) \(\alpha-\text{Fe}_2\text{O}_3\) (c) Au/Pd (d) \(\alpha-\text{Fe}_2\text{O}_3\)/Au-Pd hybrid for dopamine. Fig (B) differ scan rate for (10 -100 mV s\(^{-1}\)) (a) Bare GC (b) \(\alpha-\text{Fe}_2\text{O}_3\) (c) Au/Pd (d) \(\alpha-\text{Fe}_2\text{O}_3\)/Au-Pd hybrid for uric acid.

Figure S5. Amperometry (Time Vs Current) for modified \(\alpha-\text{Fe}_2\text{O}_3\)/Au-Pd hybrid GC for dopamine & uric acid of 50 µM concentration while other interfering analytes of 5 mM concentration.
Figure S6. shows the response of α–Fe$_2$O$_3$/Au-Pd hybrid GC at different concentration of urine sample 1 (a) 1 µM, (b) 3 µM, (c) 5 µM, (d) 6 µM, (e) 10 µM, (f) 20 µM, (g) 40 µM, (h) 60 µM, (i) 70 µM (j) 90 µM in 0.1 M PBS containing pH 7.0.

Figure S7. shows the response of α–Fe$_2$O$_3$/Au-Pd hybrid GC at different concentration of urine sample 2 (a) 1 µM, (b) 2 µM, (c) 5 µM, (d) 20 µM, (e) 70 µM, (f) 80 µM, (g) 90 µM, (h) 200 µM, (i) 300 µM, (j) 500 µM in 0.1 M PBS containing pH 7.0.
Figure S8. shows the response of α–Fe$_2$O$_3$/Au-Pd hybrid GC at different concentration of fresh human blood serum (a) 300 nM (b) 1µM (c) 4 µM (d) 5 µM (e) 10 µM (f) 25 µM (g) 50 µM containing 0.1M of PBS (pH 7.0).

Figure S9. shows the response of α–Fe$_2$O$_3$/Au-Pd hybrid GC at different concentration of dopamine hydrochloride injection (a) 450 nM, (b) 4 µM, (c) 6µM, (d)10 µM, (e) 15 µM, (f) 25 µM, (g) 50 µM, (h) 60 µM containing 0.1M of PBS (pH 7.0)
Figure S 10. shows different ratio for Au/Pd bimetal (a) 1:1 (b) 1:0.5 (c) 0.5:1 (d) 1:0.25 (e) 0.25:1 ratio containing 600 µM of dopamine & uric acid in 0.1 M of PBS (pH 7.0)

Table S1 - Voltammetric DA, UA in presence of AA recovery tests performed in Human Urine, Serum and Dopamine hydrochloride injection with α–Fe$_2$O$_3$ / Au@Pd, pH = 7.0

<table>
<thead>
<tr>
<th>Sample</th>
<th>Added [DA, UA] µM</th>
<th>Obtained [DA, UA] µM</th>
<th>Recovery (%) [DA, UA]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urine 1</td>
<td>—, 5.00</td>
<td>—, 5.06</td>
<td>—, 101.2</td>
</tr>
<tr>
<td>Urine 2</td>
<td>—, 5.00</td>
<td>—, 5.30</td>
<td>—, 106.0</td>
</tr>
<tr>
<td>Serum</td>
<td>4.50, —</td>
<td>4.29, —</td>
<td>95.3, —</td>
</tr>
<tr>
<td>Dopamine hydrochloride injection</td>
<td>4.00,1.00</td>
<td>3.70,1.03</td>
<td>92.5, 103.0</td>
</tr>
</tbody>
</table>
Table S2 Summary of various nanomaterial-based electrochemical sensors for DA and UA in presence of Ascorbic acid

<table>
<thead>
<tr>
<th>Sample Description</th>
<th>DA Concentration</th>
<th>UA Concentration</th>
<th>DA Concentration</th>
<th>UA Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pretreated pencil graphite</td>
<td>0.15-15µM</td>
<td>0.3-150µM</td>
<td>0.033µM</td>
<td>0.12µM</td>
</tr>
<tr>
<td>Poly(acrylic acid)-multiwalled carbon-nanotube composite-covered glassy-carbon</td>
<td>40nM-3µM</td>
<td>0.3µM-10µM</td>
<td>20nM</td>
<td>110nM</td>
</tr>
<tr>
<td>Multi-walled carbon nanotube-chitosan/poly(amidoamine)/DNA nanocomposite modified gold electrode</td>
<td>0.2-10µM & 10-100µM</td>
<td>0.5-100µM</td>
<td>0.03µM</td>
<td>0.07µM</td>
</tr>
<tr>
<td>Pt/reduced graphene oxide(Pt/RGO) modified glassy carbon electrode</td>
<td>10-170µM</td>
<td>10-130µM</td>
<td>0.25µM</td>
<td>0.45µM</td>
</tr>
<tr>
<td>Gold nanoparticle/choline (GNP/Ch) coated glassy carbon electrode</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2,2’-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid)(ABTS)-immobilized carbon nanotube (CNT) electrode</td>
<td>0.90-10µM & 1.87-20µM</td>
<td>2.16-240µM & 3.07-400µM</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Electrochemically preanodized clay-modified electrodes</td>
<td>0-6µM</td>
<td>0.5-10 & 10-100µM</td>
<td>2.7nM</td>
<td>0.2µM</td>
</tr>
<tr>
<td>DNA/Poly(ρ-aminobenzensulfonic acid) composite bi-layer modified glassy</td>
<td>0.19–13 µM</td>
<td>0.4–23 µM</td>
<td>88 nM</td>
<td>0.19 µM</td>
</tr>
<tr>
<td></td>
<td>Description</td>
<td>Concentration Range</td>
<td>Quantity</td>
<td>Time</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>----------------------</td>
<td>----------</td>
<td>------</td>
</tr>
<tr>
<td>9</td>
<td>RNA modified electrode</td>
<td>0.37 to 36 µM</td>
<td>0.2 µM</td>
<td>0.36 µM</td>
</tr>
<tr>
<td>10</td>
<td>poly(orthanilic acid)–multiwalled carbon nanotubes composite film-modified glassy carbon electrode</td>
<td>9–48 µM</td>
<td>6–55 µM</td>
<td>0.21 µM</td>
</tr>
<tr>
<td>11</td>
<td>multi-walled carbon nanotubes with methylene blue composite film-modified electrode</td>
<td>0.4–10.0 µM</td>
<td>2.0–20.0 and 20.0–200.0 µM</td>
<td>0.2 µM</td>
</tr>
<tr>
<td>12</td>
<td>Glassy carbon electrode modified with poly(dibromofluorescein)</td>
<td>0.2 to 200 µM L⁻¹</td>
<td>1.0 to 250 µM L⁻¹</td>
<td>0.03 µM L⁻¹</td>
</tr>
<tr>
<td>13</td>
<td>functionalized ordered mesoporous carbon/ionic liquid gel modified electrode</td>
<td>0.1 to 500 µM</td>
<td>0.1 to 100 µM</td>
<td>4.1 nM</td>
</tr>
<tr>
<td>14</td>
<td>Ionic Liquid Functionalized Graphene-Based electrode</td>
<td>1–400 µM</td>
<td>1–600 µM</td>
<td>0.679 µM</td>
</tr>
<tr>
<td>15</td>
<td>Indole-3-Carboxaldehyde Modified Glassy Carbon Electrode</td>
<td>10 µM -100 µM</td>
<td>10 µM -100 µM</td>
<td>1.70 µM</td>
</tr>
<tr>
<td>16</td>
<td>DNA/Pt Nanocluster Modified Electrode</td>
<td>1.1×10⁻⁷ to 3.8×10⁻⁵ M L⁻¹</td>
<td>3.0×10⁻⁷ to 5.7×10⁻⁵ M L⁻¹</td>
<td>3.6×10⁻⁸ M L⁻¹</td>
</tr>
</tbody>
</table>
References:

6 Yi-Kai, C.; Ming-Chang, Y. An 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid)-immobilized electrode for the simultaneous detection of dopamine and uric acid in the presence of ascorbic acid. *Bioelectrochemistry*, 2013, 91, 44–51.

8 Xiangqin, Lin.; Guangfeng, K.; Liping, Lu. DNA/Poly(p-aminobenzensulfonic acid) composite
bi-layer modified glassy carbon electrode for determination of dopamine and uric acid under coexistence of ascorbic acid. *Bioelectrochemistry, 2007, 70, 235–244.*

