Rapid fluorescence detection of hypoxic microenvironment by nitro-benzyl conjugated chitosan nanoparticles encapsulating hydrophobic fluorophores

†

Long Ren, a Young Joon Kim, b Song Yi Park, b Sein Lee, b Joo-Yong Lee, b Chan Pil Park* b and Yong Taik Lim*, a

a. SKKU Advanced Institute of Nanotechnology (SAINT), School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.

b. Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea.

* Corresponding Author Tel.: +82 31 2994172

E-mail addresses: yongtaik@skku.edu, chan@cnu.ac.kr
Scheme S1 Synthetic route of amphiphilic chitosan polymer (ACP).
Fig. S1 1H NMR spectrum of water-soluble chitosan in D$_2$O.
Fig. S2 1H NMR spectrum of nitro-benzyl substrate (NBS) in CDCl$_3$.
Fig. S3 Fluorescence intensity of HRCN-R6G with micelle concentration
Fig.S4 UV absorption spectra of PBS, NADH, NTR, and nitrobenzyl compound.
Fig. S5 (A) Photographs of HRCN-R6G without (left) and with (right) NTR/NADH.

(B) Size distribution of HRCN-R6G after treating with NTR/NADH.
Fig. S6 Mean FI after incubation under normoxia and hypoxia (10% O$_2$ and 1% O$_2$) condition for 30 mins. T tests were used to determine the significance between normoxia & hypoxia groups.