Electronic Supplementary Information

Deposition of Gadolinium within Shell Structure of Micelles for Integrated Magnetic Resonance Imaging and Robust Drug Delivery System

Junping Ma, ab Haiqing Donga*, Haiyan Zhua, Cheuk-wing Lib, Yongyong Li a* and Donglu shia

a. The Institute for Translational Nanomedicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science (iNANO), Tongji University School of Medicine, Shanghai, P.R. China. *E-mail: inano_donghq@tongji.edu.cn (Dong H.); yongyong_li@tongji.edu.cn (Li Y.).
b. State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China.
In vitro release of Gd(III)

The release behavior of Gd(III) from hybrid micelles was evaluated in PBS (10 mM, pH = 7.4) at 37 °C. The formed hybrid micelles were placed into dialysis tube and immersed in 50 ml PBS, the released solution were collected at predetermined time intervals and replenished with equivalent PBS. The Gd(III) concentration of hybrid micelles and the released Gd(III) concentration were carried on an ICP-MS system (Thermo iCAP Qs ICP-MS). The cumulative release of Gd(III) is calculated as amount of released Gd(III)/ amount of loaded Gd(III)*100%.

Figure S1. Release profile of Gd(III) from hybrid micelles in PBS (pH 7.4).