Hybrid of Gold Nanostar and Indocyanine Green for Targeted Imaging-guided Diagnosis and Phototherapy Using Low-density Laser Irradiation

Baoji Du, Xiaoxiao Gu, Wenjing Zhao, Zuoja Liu, Dan Li, Erkang Wang, and Jin Wang

a. State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun, Jilin 130022, P. R. China
b. University of Chinese Academy of Sciences, Beijing, 100039, P. R. China
c. College of Physics, Jilin University, Changchun, Jilin, 130012, P. R. China
d. Department of Chemistry and Physics State University of New York at Stony Brook, NY 11794-3400, USA

Fig. S1 UV-Vis absorbance spectrum of the purified FA-PEI.
Fig. S2 Stability of APP and APP-ICG in different solution. A) The absorbance at 800 nm of APP in each time point after being dissolved in PBS. B) Digital images of APP-ICG dissolved into H$_2$O, 0.9% NaCl, PBS, DMEM and DMEM+10% FBS.

Fig. S3 TEM of polydopamine-coated gold nanosphere (A), gold nanorod (B) and gold nanoshell (C).
Fig. S4 Temperature measurement of 0.1 nM APP and 0.1 nM APP-ICG solution at laser power of 0.33 W/cm².

Fig. S5 UV-Vis-NIR absorbance spectra of A) AuNS, 60 minutes after preparation of with and without laser irradiation. B) APP and 60 minutes after laser irradiation.
Fig. S6 Cell viability of MCF-7 cells incubated in different concentrations of APP.

Fig. S7 Representative tumor size at the 14th day of different groups: a) PBS+0.33 W/cm², b) APP-ICG, c) ICG+0.33 W/cm², d) APP+0.33 W/cm², and e) APP-ICG+0.33 W/cm²
Fig. S8 Representative images of H&E staining of I) the tumor tissues treated with A) APP-ICG+0.33 W/cm², B) APP+0.33 W/cm², C) ICG+0.33 W/cm², D) APP-ICG and E) PBS+0.33 W/cm², and II) heart, liver, spleen, lung and kidney treated by APP-ICG. Images of a) to e) stand for control group, and f) to j) are the post-injection group. The scale bars are 50 µm.