Highly stable biomolecule supported gold nanoparticles/graphene nanocomposite as a sensing platform for H$_2$O$_2$ biosensor application

Balamurugan Thirumalraj, Chellakannu Rajkumar, Shen-Ming Chen,* and Palani Barathi,

aDepartment of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan (ROC).

bElectrochemical Energy Research Lab, Centre for Nanoscience and Technology, Pondicherry University, Puducherry, 605014, India.

* Corresponding author. Fax: +886 2270 25238; Tel: +886 2270 17147

E-mail: smchen78@ms15.hinet.net
Figure S1. FE-SEM images of GO (A), HN (B), HN-RGO (C) and HN-RGO/AuNPs (D) composites.
Figure S2. FE-SEM image of HN-RGO/AuNPs composite (A) and the corresponding EDX elemental mapping of carbon (B), oxygen (C) and gold (D) nanoparticles.
Figure S3. XRD patterns for GO (a), HN-RGO (b), HN-RGO/AuNPs (c) composite.
Figure S4. (A) CV response obtained at HN-RGO/AuNPs modified electrode in N₂ saturated different pH solutions (3–11) at a scan rate of 100 mVs⁻¹. (B) The calibration plot for pH vs. E⁰.
Figure S5. Effect of AuNPs using different AuCl₄ concentrations on HN-RGO/AuNPs composite towards H₂O₂ detection.