Electronic Supplementary Information

A mitochondria-targeted ratiometric fluorescent probe for hypochlorite and its applications in bioimaging

Shi-Li Shen, a, c,† Xuan Zhao, b,† Xiao-Fan Zhang, a Xuan-Li Liu, a Hao Wang, a Yi-Ying Dai, a Jun-Ying Miao b and Bao-Xiang Zhao a *

a Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China. *E-mail: bxzhao@sdu.edu.cn; Fax: +86 531 88564464; Tel: +86 531 88366425

b Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100, P. R. China

c School of Chemistry and Pharmaceutical Engineering, Taishan Medical University, Taian 271016, P. R. China

Table of Contents

Fig. S1-S4 1H NMR, 13C NMR, IR and HRMS of compound 3……………………………………2-3
Fig. S5-S8 1H NMR, 13C NMR, IR and HRMS of RCP……………………………………………………4-5
Fig. S9 Fluorescence intensity ratio (I 570/I 483) of RCP versus pH values in the absence or presence of -OCl…………………………………………………………………………………6
Fig. S10 Time-dependent fluorescence intensity ratio (I 483/I 570) changes of RCP upon addition of -OCl…………………………………………………………………………………6
Table S1. The performances of RCP and other -OCl probes………………………………………………7
Fig. S11 HRMS spectra of the crude product after treatment of RCP with -OCl………8
Fig. S12 Fluorescence images of RAW264.7 cells co-stained with RCP and Lyso Tracker Deep Red…………………………………………………………………………………………8
Fig. S13 Fluorescence images of RAW264.7 cells co-stained with RCP and Mito Tracker Deep Red……………………………………………………………………………………9
Fig. S14 Photostability of RCP in RAW264.7 cells…………………………………………………………10
Fig. S1 1H NMR spectrum of compound 3.

Fig. S2 13C NMR spectrum of compound 3.
Fig. S3 Infrared spectrum of compound 3.

Fig. S4 High resolution mass spectrum of compound 3.
Fig. S5 1H NMR spectrum of RCP.

Fig. S6 13C NMR spectrum of RCP.
Fig. S7 Infrared spectrum of RCP.

Fig. S8 High resolution mass spectrum of RCP.
Fig. S9 Fluorescence intensity ratio (I_{570}/I_{483}) of RCP versus pH values in the absence (■) or presence (●) of \cdotOCl (8 equivalent). Condition: [RCP] = 5 µM, [·OCl] = 40 µM, PBS buffer (pH 4.0-10.0, containing 0.5% EtOH), incubation time = 30 min. $\lambda_{ex} = 420$ nm.

Fig. S10 Time-dependent fluorescence intensity ratio (I_{483}/I_{570}) changes of RCP upon addition of \cdotOCl (6 equivalent). Condition: [RCP] = 5 µM, [·OCl] = 30 µM, PBS buffer (pH 7.4, containing 0.5% EtOH), $\lambda_{ex} = 420$ nm.
Table S1. The performances of RCP and other °OCl probes

<table>
<thead>
<tr>
<th>Probes</th>
<th>Probe concentration (µM)</th>
<th>Solvent</th>
<th>λex/λem (nm)</th>
<th>Detection limit (nM)</th>
<th>Reaction time</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td>EtOH:PBS (pH 7.4) = 0.5:99.5 (v:v)</td>
<td>420/483,570</td>
<td>70</td>
<td>within 1 min</td>
<td>This work</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>DMF:potassium phosphate buffer (pH 8.5) = 4:6 (v:v)</td>
<td>410,554/501,578</td>
<td>24</td>
<td>within 1 min</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>THF:Na₂BaO₃/NaOH (pH 12) = 3:7 (v:v)</td>
<td>520/578</td>
<td>27</td>
<td>20 min</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>DMF:NaH₂PO₄ (pH 5) = 4:6 (v:v)</td>
<td>410/470,580</td>
<td>–</td>
<td>within 100 s</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>DMF:PBS (pH 7.4) = 1:1 (v:v)</td>
<td>414/473,594</td>
<td>52</td>
<td>–</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>DMSO:PBS (pH 7.4) = 1:99 (v:v)</td>
<td>553/558</td>
<td>9</td>
<td>2 min</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>EtOH:Na₂HPO₄ (pH 6) = 3:7 (v:v)</td>
<td>350/440,585</td>
<td>100</td>
<td>2 min</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>MeCN:PBS (pH 7.4) = 3:7 (v:v)</td>
<td>550/575</td>
<td>1.06</td>
<td>40 min</td>
<td>47</td>
</tr>
</tbody>
</table>
Fig. S11 HRMS spectra of the crude product after treatment of RCP with ‘OCl.

Fig. S12 Fluorescence images of RAW264.7 cells co-stained with RCP (5 μM) and Lyso Tracker Deep Red (0.1 μM). (a) Blue fluorescence of RCP (405-555 nm), λex = 405 nm. (b) Red fluorescence of Lyso Tracker Deep Red, λex = 640 nm. (c) Merge images of (a) and (b). (d) Bright field images. (e) Quantitation of co-localization coefficient (Pearson’s coefficient): 0.59. Scale bar = 10 μm.
Fig. S13 Fluorescence images of RAW264.7 cells co-stained with RCP (5 μM) and Mito Tracker Deep Red (0.3 μM). (a) Red fluorescence of RCP (560-700 nm), \(\lambda_{ex} = 405 \text{ nm} \). The red fluorescence was coloured as green for discrimination. The signal has been amplified to emphasize the probe’s location. (b) Red fluorescence of Mito Tracker Deep Red, \(\lambda_{ex} = 644 \text{ nm} \). (c) Merge images of (a) and (b). (d) Bright field images. (e) Quantitation of co-localization coefficient (Pearson’s coefficient): 0.91. Scale bar = 20 μm.
Fig. S14 Photostability of RCP (5 µM) in RAW264.7 cells. (a) Fluorescence images of RAW264.7 cells after 0, 30, 60, 90 and 120 s of continuous irradiation. λ_{ex} = 405 nm. First line: fluorescence images at blue channel (405-555 nm), second line: fluorescence images at red channel (560-700 nm), third line: bright field images, fourth line: merge images of first, second and third line. (b) The relative ratio of red fluorescence intensity (rhodamine moiety) in cells at different periods of time. (c) The relative ratio of blue fluorescence intensity (coumarin moiety) in cells at different periods of time. (d) The corresponding relative ratio of red/blue fluorescence intensity in cells at different periods of time [the initial red/blue fluorescence intensity ratio (i.e., at about 0 s) was defined as 1.0]. Fluorescence intensity quantitation was analyzed by the Image J. The results were presented as means ± SE with replicates n = 3. Scale bar = 20 µm.