Supporting Information

Osteogenic and tenogenic induction of hBMSCs by integrated nanofibrous scaffold with chemical and structural mimic to bone-ligament connection

Zifeng Lin,abc Xiujuan Zhao,ab Si Chenad and Chang Dudabcd

1 Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, PR China
2 National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China
3 Key Laboratory of Biomedical Materials Science and Engineering, Ministry of Education, Guangzhou 510006, PR China
4 Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, PR China

*To whom correspondence should be addressed:
duchang@scut.edu.cn
Fig. S1 The fracture of the scaffold while the rotation speed is not the same. (a) rotation speed of the motors was 20rpm and 23rpm, scale bar: 200μm (b) rotation speed of the motors was 20rpm and 25rpm, scale bar: 100μm.

Fig. S2 The angle distribution of nanofibers electrospun for 1, 2, 3 and 5 hours.
Fig. S3 Twisted fiber yarns existed at the scaffold, scale bar: 10μm.

Fig. S4 Immunofluorescence of type I collagen (red) with nuclei (blue) and F-actin (green) counterstain on aligned region.