Development of demineralized bone matrix based implantable and biomimetic microcarrier for stem cell expansion and single-step tissue-engineered bone graft construction

Zhenxing Wanga,b,1, Dingyu Wua,b,1, Jiwei Zouc,1, Quan Zhoud, Wei Liua,b, Wenjie Zhanga,b, Guangdong Zhoua,b, Xiansong Wanga,b, Guoxian Peic,*, Yilin Caoa,b,*, Zhi-Yong Zhanga,b,f,*

a Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Key Laboratory of Tissue Engineering, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China

b National Tissue Engineering Center of China, Shanghai 200241, China
c Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi’an 710032, China
d Hunan Cancer Hospital, Hunan 410000, China
f China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, Zhejiang, 310058, China

1 These authors contributed equally to this work.

* Corresponding authors

Corresponding authors’ e-mail addresses:

*Zhi-Yong Zhang:+86-21-34291002. Fax:+86-021-34292305

E-mail: mr.zhiyong@gmail.com
Video Legends:

Animation 1: The construction of μTEBGs using DBM-MC and BMSCs in integrated dynamic fabrication system for injectable bone tissue engineering applications. 1) Dynamic seeding: add DBM Microcarriers; 2) Dynamic seeding: add seed cells; 3) Dynamic expansion: cell proliferation on microcarriers; 4) Osteogenic differentiation: change into osteoinduce medium; 5) Osteogenic differentiated micro-TEBG; 6) Alginate + micro TEBG: injectable therapy application.