Electronic supplementary information (ESI)

Cell adhesion on glassy scaffolds with different mechanical response

Shinichiro Shimomura, a Hisao Matsuno, *, a,b Kazuaki Sanada, c and Keiji Tanaka*, a,b

a Department of Applied Chemistry, Kyushu University, Fukuoka 819-0395, Japan
b International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395, Japan
c Department of Mechanical Systems Engineering, Toyama Prefectural University, Imizu 939-0398, Japan

*To whom correspondence should be addressed
FAX: +81-92-802-2880 TEL: +81-92-802-2878
E-mail: h-matsuno@cstf.kyushu-u.ac.jp and k-tanaka@cstf.kyushu-u.ac.jp

Static water contact angles.
Static water contact angles were examined for poly(methyl methacrylate)/polyisoprene (PMMA/PI) bilayer films and PMMA monolayer films, respectively, with a different thickness of each PMMA layer (d_{PMMA}). Fig. S1 shows the data. The averaged water contact angle values were approximately 77° and these values were almost the same regardless of the configuration and the d_{PMMA} of the films.

![Fig. S1](image) Water contact angles for the PMMA/PI bilayer and PMMA monolayer films, respectively.