Facile Fabrication of Varisized Calcium Carbonate Microspheres as Vaccine Adjuvant

Jilei Jia,†‡ Qi Liu,†⃣ Tingyuan Yang,† Lianyan Wang,*† Guanghui Ma,*†,§

† State Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China.

‡ University of Chinese Academy of Sciences, Beijing, 100049, PR China

§ Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing, 210023, PR China

* Corresponding authors.

Tel/fax: 8610-82544931, E-mail addresses: wanglianyan@ipe.ac.cn (L.Y. Wang)

Tel/fax: 8610-82627072, E-mail addresses: ghma@ipe.ac.cn (G.H. Ma)
Figure S1. SEM images of CaCO\(_3\) particles synthesized in different ultrasonicating power: (a) 140 W; (b) 200 W; (c) 320 W.

Figure S2. The morphology transformation of CaCO\(_3\) particles. (a) SEM images when the CaCO\(_3\) MPs were fabricated; (b) the images of CaCO\(_3\) particles in the water 6 day after fabrication; (c) the photos of CaCO\(_3\) particles freeze-dried for 6 months.

Figure S3. Qualitative analyses of MP-mediated antigen internalization into DCs by CLSM. Antigens were labeled by FITC (green points); lysosomes were labeled by Lyso-Tracker Red (red points).
Figure S4. Cytokines (IL-4, IL-6 and IL-12) secretion of BMDCs stimulated with different formulations for 24 h.

Figure S5. Serum anti-HBsAg IgM levels in mice immunized with different formulations on day 7 after primary immunization.