Supporting Information for

A Targetable Fluorescent Probe for Imaging Exogenous and Intracellular Formed Nitroxy1 at Mitochondria in Living Cells

Mingguang Ren, Beibei Deng, Kai Zhou, Jian-Yong Wang, Xiuqi Kong, Weiying Lin *

Institute of Fluorescent Probes for Biological Imaging, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, P.R.

*Email: weivinglin2013@163.com

*Correspondence to: Weiying Lin, Institute of Fluorescent Probes for Biological Imaging, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, P.R. China. Email: weivinglin2013@163.com.
Table of contents

Figure S1	.. S3
Figure S2	.. S3
Figure S3	.. S4
Figure S4	.. S4
Figure S5	.. S5
Figure S6	.. S5
Figure S7	.. S6
Spectral characterization	... S6-10
Figure S1 The absorption spectral changes of *Mito-HNO* (10 μM) upon addition of increasing concentrations of AS (0-10 equiv) in PBS buffer, pH 7.4, containing 5 % DMF as a cosolvent. Inset: Photographs showing the color changes of the probe *Mito-HNO* (1 mM) before and after addition of 10 equiv. AS to the solution.

Figure S2 The emission intensity changes (at 545 nm) of compound 3 at different pH PBS buffer, containing 5 % DMF as a cosolvent (λ_{ex} = 488 nm).
Figure S3 (A) The fluorescence intensities at 545 nm of Mito-HNO (5 μM) in the presence of AS (30 μM) at room temperature (25 °C) for continuously monitored at time intervals periods (0-60 min) in PBS buffer (pH 7.4, containing 5 % DMF as a cosolvent). (B) *Pseudo*-first-order kinetic plot of the reaction of Mito-HNO in the presence of AS at 25 °C.

Figure S4 (A) The fluorescence intensities at 545 nm of Mito-HNO (5 μM) in the presence of AS (30 μM) at 37 °C for continuously monitored at time intervals periods (0-7 min) in PBS buffer (pH 7.4, containing 5 % DMF as a cosolvent). (B) *Pseudo*-first-order kinetic plot of the reaction of Mito-HNO in the presence of AS at 37 °C.
Figure S5 The fluorescence responses of the probe Mito-HNO (10.0 µM) to various relevant species (100 µM) in pH 7.4, PBS buffer (5 % DMF) at 37 °C for 20 min (\(\lambda_{ex} = 488\) nm).

Figure S6 Cytotoxicity assays of Mito-HNO at different concentrations (0 µM; 5 µM; 10 µM; 20 µM; 30 µM) for HeLa cells in different time periods (A) 4h and (B) 24h.

Figure S7 Brightfield and fluorescence images of HeLa cells stained with compound 4 and MitoTracker Red a) brightfield image; b) from green channel; c) from the red channel (mitochondria staining); d) overlay of brightfield, green and red channels; e) overlay of green and red channels; f) Intensity profile of linear region of interest across the HeLa cell costained with green channel of compound 4 imaging of HNO and red
channel of Mito Tracker Red; g) Intensity scatter plot of green and red channels.

Figure S8 1H-NMR (CDCl$_3$) spectrum of compound 3

Figure S9 13C-NMR (DMSO-d_6) spectrum of compound 3
Figure S10 1H-NMR (DMSO-d_6) spectrum of compound 4.

Figure S11 13C-NMR (DMSO-d_6) spectrum of compound 4.
Figure S12 1H-NMR (DMSO-d_6) spectrum of compound Mito-HNO.

Figure S13 13C-NMR (DMSO-d_6) spectrum of compound Mito-HNO.
Figure S14 31P-NMR (DMSO-d_6) spectrum of compound Mito-HNO without reference.

Figure S15 The purity of the probe Mito-HNO was analyzed by HPLC. (A) Typical HPLC chromatogram with UV/vis detection (254 nm). The retention times of Mito-HNO is 14.5 min. (B) Integration peak list of the results of HPLC chromatogram.