Supporting Information

Improving organic memory performance through mounting conjugated branches on a triphenylamine core

[a] College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China.

[b] College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006, P. R. China.

*E-mail: lujm@suda.edu.cn; Fax: +86 512 65880367; Tel: +86 512 65880368
Fig. S1 TGA curves of the three compounds measured in nitrogen atmosphere at a heating rate of 10 °C·min⁻¹.

Fig. S2 The electronic photos of the three compounds film at room temperature: TPA-BBT (right); TPA-2BBT (middle); TPA-3BBT (left).
Fig. S3 Tapping-mode height of AFM topographic images of compounds thin film vacuum-deposited onto ITO at different annealing temperatures: TPA-BBA (a (60 °C), b (100 °C)); TPA-2BBA (c (60 °C), d (80 °C)).

Fig. S4 Tapping-mode height of AFM topographic images of TPA-3BBA thin film vacuum-deposited onto ITO at different annealing temperatures: a (r. t.), b (60 °C), c (80 °C), d (100 °C), e (120 °C).
Fig. S5 Cyclic voltammetry (CV) curves of the ferrocene in anhydrous dicholomethane solution with 0.1 M Bu₄NPF₆ as the supporting electrolyte. The scan rate was 100 mV·s⁻¹.

Fig. S6 The schematic illustration of the TPA-nBBT (n=1,2,3) molecular size which was obtained from theoretical calculations (a)TPA-BBT; (b) TPA-2BBT; (c) TPA-3BBT.