Electronic Supplementary Information (ESI)

Pyridyl-substituted anthracene derivatives incorporating solid-state emission and charge transport property

Jie Liu,^{*a*} Weigang Zhu,^{*b,c*} Ke Zhou,^{*b,c*} Zongrui Wang,^{*b,c*} Ye Zou,^{*b*} Qing Meng,^{*b*} Jie Li,^{*b,c*} Yonggang Zhen,^{*b*} Wenping Hu^{*a,b**}

^aDepartment of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China. ^bBeijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. ^cUniversity of the Chinese Academy of Sciences, Beijing 100190, China.

*Correspondence:<u>huwp@tju.edu.cn</u>

Table of Contents

Experimental section: ¹H NMR information of the three compounds.

- Table S1. Crystal data and structure refinement for 1a, 1b and 1c.
- Figure S1. Cyclic voltammetry measurements of 1a-c with ferrocene as inner standard.

Figure S2. Ultraviolet photoelectron spectroscopy (UPS) measurementS of 1a-c.

Figure S3. Thermogravimetric analysis of 1a, 1b and 1c.

Table S2. Summary of absorption and emission characters and calculated band gaps, orbital energy levels and

decomposition temperatures of 1a, 1b and 1c.

Figure S4. Fluorescence quantum efficiency of 1a, 1b and 1c monomers.

Figure S5. Evidence of aggregation caused quenching (ACQ) effect of 1a and 1b.

Table S3. Criterions of H- and J-aggregates.

Figure S6. AFM and XRD characterization of 1b and 1c thin films; and typical transfer characteristics of thin film

FETs based on 1b.

References

¹H NMR information of the trhee compounds.

1a, ¹H NMR (400 MHz, CDCl₃) δ 8.79 (d, J = 4.7 Hz, 2H), 8.67 (s, 2H), 8.56 (s, 2H), 8.16 (q, J = 8.9 Hz, 5H), 7.95 (d, J = 7.9 Hz, 2H), 7.84 (t, J = 7.5 Hz, 2H), 7.30 (d, J = 4.7 Hz, 2H).

1b, ¹H NMR (400 MHz, CDCl₃) *δ* 9.08 (s, 2H), 8.68 (s, 2H), 8.57 (s, 2H), 8.27 (s, 2H), 8.19 (d, *J* = 8.7 Hz, 4H), 7.76 (d, *J* = 8.4 Hz, 2H), 7.56 (s, 2H).

1b, ¹H NMR (400 MHz, CDCl₃) δ 8.75 (d, J = 5.7 Hz, 4H), 8.57 (s, 2H), 8.33 (s, 2H), 8.17 (d, J = 8.8 Hz, 2H), 7.79 (dd, J = 8.8, 1.4 Hz, 2H), 7.70 (d, J = 6.0 Hz, 4H).

	· · · · · · · · · · · · · · · · · · ·		,, x , x , x , y
Compound	1a (1439492)	1b (1439493)	1c (1439496)
Empirical formula	C24 H16 N2	C24 H16 N2	C24 H16 N2
Formula weight	332.39	332.39	332.39
Temperature	113(2) K	123(2) K	173.1500 K
Wavelength	0.71073 Å	0.71073 Å	0.71073 Å
Crystal system	Monoclinic	Orthorhombic	Monoclinic
Space group	P2(1)/c	Pca2(1)	P 1 21/c 1
	a = 17.318(4) Å	a = 7.4367(15) Å	a = 12.582(10) Å
	b = 6.2349(12) Å	b = 6.2803(13) Å	b = 5.997(5)Å
Unit call dimensions	c = 7.3422(15) Å	c = 35.030(7) Å	c = 10.882(9) Å
Unit cell dimensions	a= 90°	a= 90°	a= 90°
	β=96.81(3)°	β= 90°,	β= 103.308(13)°
	$\gamma = 90^{\circ}$.	γ= 90°.	<i>γ</i> = 90°.
Volume	787.2(3) Å ³	1636.1(6) Å ³	799.1(11) Å ³
Ζ	2	4	2
Density (calculated)	1.402 Mg/m ³	1.349 Mg/m ³	1.381 Mg/m ³
Absorption coefficient	0.083 mm ⁻¹	0.080 mm ⁻¹	0.081 mm ⁻¹
F(000)	348	696	348
Crystal size	0.20 x 0.18 x 0.12 mm ³	0.32 x 0.30 x 0.12 mm ³	0.39 x 0.37 x 0.03 mm ³
Theta range for data collection	2.37 to 27.95°	2.33 to 25.99°	3.328 to 27.397°
	$-22 \leq h \leq 22$	$\textbf{-9} \leq h \leq 8$	$-16 \le h \le 15$
Index ranges	$-8 \le k \le 7$	$-7 \le k \le 7$	$-7 \le k \le 7$
	$-9 \le l \le 9$	$-43 \le 1 \le 43$	$-14 \le l \le 14$
Reflections collected	8756	8767	6164
Independent reflections	1882 [R(int) = 0.0402]	2986 [R(int) = 0.0819]	1810 [R(int) = 0.0553]
Max. and min. transmission	0.9902 and 0.9837	0.9905 and 0.9750	1.0000 and 0.6325
Data / restraints / parameters	1882/0/118	2986/1/236	1810 / 0 / 118
Goodness-of-fit on F2	1.063	0.997	1.194
Final R indices	R1 = 0.0404	R1 = 0.0816	R1 = 0.0746
[I>2sigma(I)]	wR2 = 0.1091	wR2 = 0.1974	wR2 = 0.1722
D 1. 11 (11. 1. ()	R1 = 0.0497	R1 = 0.1004	R1 = 0.0825
K indices (all data)	wR2 = 0.1131	wR2 = 0.2145	wR2 = 0.1775
Largest diff. peak and hole	0.310 and -0.222 e.Å ⁻³	0.529 and -0.406 e.Å ⁻³	0.283 and -0.267 e.Å ⁻³

Table S1. Crystal data and structure refinement of 1a, 1b and 1c. (CCDC No. 1439492, 1439493, 1439496.)

Figure S1. Cyclic voltammetry measurements of 1a-c with ferrocene as inner standard.

Figure S2. Ultraviolet photoelectron spectroscopy (UPS) measurements of 1**a-c**. The sample for UPS measurement was prepared by depositing a thin film (8 nm) on a small plate of ITO (size: 1 cm × 1 cm). The ionization potential was obtained using the formula I=h-(E_{K}^{max} - $E_{K}^{cut-off}$). The cut-off at the left-hand part of UPS (He I) energy distribution curves E_{K}^{max} corresponds to electrons that have just enough energy to escape from the solid to vacuum level and the maximum kinetic energy $E_{K}^{cut-off}$ at the right-hand part corresponds to electrons from the HOMO level.

Figure S3. Thermogravimetric analysis of 1a, 1b and 1c.

 Table S3. Summary of absorption and emission characters and calculated band gaps, orbital energy levels and decomposition temperatures of 1a, 1b and 1c.

	$\lambda_{onset}\left(nm\right)$	Eg (eV)	$\lambda_{0-0,Abs}(nm)$	$\lambda_{0-0,PL}(nm)$	HOMO ^a (eV)	HOMO ^b (eV)	T _{dec} (°C)
1a	420	2.95	407	417	-5.55	-5.37	307
1b	411	3.01	398	410	-5.4	-5.58	333
1c	421	2.95	403	420	-5.4	-5.9	316

^a HOMO levels calculated from CV test, ^b HOMO levels obtained from UPS.

Figure S4. Fluorescence quantum efficiency of **1a**, **1b** and **1c** monomers. The efficiency of three compounds in solution were measured in comparison with 9,10-diphenyl anthracene (9,10-DPA). Cyclohexane (η =1.42662) was used as solvent for 9,10-DPA, and THF (η =1.4050) was used for the three compounds and the excite wavelength was fixed at 370 nm, Φ F of 90% was reported for 9,10-DPA, and the calculated Φ F of **1a**, **1b**, **1c** monomers was 86.0%, 75.2%, 73.7%, respectively.

Figure S5. Evidence of aggregation caused quenching (ACQ) effect of 1a (a) and 1b (b).

Table S3. Criterions of H- and J-aggregates.

	Absorption	Relative Intensity of 0-0 peak	Stokes shift	Radiative deacay rate/ k_f
H- aggregates	Blue-shifted	Decreased	Increased	Decreased
J-aggregates	Red-shifted	Increased	Decreased	Increased

By comparing nanoparticles with monomers, H-aggregates usually show blue-shifted absorption, decreased relative intensity of 0-0 peak, increased stokes shift and decreased radiative decay rate k_f , where $k_f = \Phi_F / \tau$.¹⁻³

Figure S6. AFM (a, b) and XRD (c) characterization of 1b and 1c thin films; and typical transfer characteristics of thin film FETs based on **1b**. The output curve was unable to get because of the poor performance.

References

- 1. Z. Xu, Q. Liao, Q. Shi, H. Zhang, J. Yao, H. Fu, Adv. Mater. 2012, 24, OP216-OP220.
- Z. Xu, Q. Liao, Y. Wu, W. Ren, W. Li, L. Liu, S. Wang, Z. Gu, H. Zhang, H. Fu, J. Mater. Chem., 2012, 22, 17737-17743.
- 3. F. C. Spano, Accounts Chem. Res., 2009, 43, 429-439.