Electronic Supplementary Information for

Gold Nanoparticles as an Ultrathin Scattering Layer For Efficient Dye-Sensitized Solar Cells

Lu Zhang and Zhong-Sheng Wang*

Department of Chemistry, Lab of Advanced materials, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, 2205 Songhu Road, Shanghai 200438, P. R. China
E-mail: zs.wang@fudan.edu.cn
Figure S1. The top (a) and cross-sectional (b) view SEM images for the photoanode with Au layer of 48 nm nanoparticles

Figure S2. The top (a) and cross-sectional (b) view SEM images for the photoanode with Au layer of 94 nm nanoparticles

Figure S3. The top (a) and cross-sectional (b) view SEM images for the photoanode with Au layer of 125 nm nanoparticles
Figure S4. The top (a) and cross-sectional (b) view SEM images for the photoanode with Au layer of 162 nm nanoparticles

Figure S5. The top (a) and cross-sectional (b) view SEM images for the photoanode with Au layer of 203 nm nanoparticles

Table S1. Photovoltaic performance of DSSCs with different amount of Au nanoparticles (203 nm)

<table>
<thead>
<tr>
<th>Au amount/μg cm²</th>
<th>V_{oc} / mV</th>
<th>J_{sc} / mA cm²</th>
<th>FF</th>
<th>η / %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>764</td>
<td>17.27</td>
<td>0.73</td>
<td>9.63</td>
</tr>
<tr>
<td>2</td>
<td>732</td>
<td>14.81</td>
<td>0.72</td>
<td>7.81</td>
</tr>
<tr>
<td>3</td>
<td>711</td>
<td>12.70</td>
<td>0.74</td>
<td>6.68</td>
</tr>
<tr>
<td>4</td>
<td>665</td>
<td>8.04</td>
<td>0.65</td>
<td>3.48</td>
</tr>
</tbody>
</table>