Low residual donor concentration and enhanced charge transport in low-cost electrodeposited ZnO

Mourad Benlamri, Samira Farsinezhad, Douglas W. Barlage and Karthik Shankar*

a Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, T6G 2V4, Canada
b National Institute for Nanotechnology, National Research Council, 11421 Saskatchewan Drive, Edmonton, AB, T6G 2M9

1. Field-emission scanning electron microscope (FESEM) images of a cleaved Cu/ZnO sample:

Fig. S1: High magnification top-view FESEM image of a cleaved ZnO/Cu sample showing film morphology.
2. Optical absorption and photoluminescence spectra of Cu/ZnO films

Fig. S3: Optical spectra were measured by the spectrophotometry technique for two samples: n-Si/SiO$_2$/TiW/Cu (black line) and n-Si/SiO$_2$/TiW/Cu/ZnO (red line). The thickness of the electrodeposited ZnO film is ~ 6.9 μm as measured by cross-sectional FESEM.
Fig. S4: Room temperature photoluminescence spectra from two samples: n-Si/SiO$_2$/TiW/Cu (black line) and n-Si/SiO$_2$/TiW/Cu/ZnO (red line), were measured for an excitation wavelength of 345 nm.