Distinct phosphorescence enhancement of red-emitting iridium(III) complexes with formyl-functionalized phenylpyridine ligands

Sizhen Cao, a, † Lin Hao, a, † Wen-Yong Lai, a, b Hao Zhang, a Zhou Yu, a Xinwen Zhang, a, * Xu Liu, a
Wei Huang a, b

a Key Laboratory for Organic Electronics & Information Displays (KLOEID) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210046, China

b Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.

† These authors contributed equally.
* E-mail: iamwylai@njupt.edu.cn (W.-Y. Lai); iamxwzhang@njupt.edu.cn (X. Zhang)
Figure S1. 1H NMR of Ir-CHO.

Figure S2. 13C NMR of Ir-CHO.
Figure S3. MALDI-TOF mass spectra of Ir-CHO.

Figure S4. 1H NMR of Ir-OH.
Figure S5. 13C NMR of Ir-OH.

Figure S6. MALDI-TOF mass spectra of Ir-OH.
Figure S7. 1H NMR of Ir-PQCz.

Figure S8. 13C NMR of Ir-PQCz.
Figure S9. MALDI-TOF mass spectra of Ir-PQCz.

Figure S10. DSC traces of the Ir(III) complexes measured at a scan rate of 10 °C/min under N₂.
Figure S11. WAXD patterns (15-60°) of the Ir(III) complexes.

Figure S12. The PL transients of the Ir(III) complexes in N$_2$-degassed CH$_2$Cl$_2$ at 298 K with 400 nm excitation.
Figure S13. Cyclic voltammograms of the Ir(III) complexes in 0.1 M tetra-n-butylammonium hexafluorophosphate (Bu_4NPF_6) with a scanning rate of 50 mV/s.

Figure S14. EL spectra of OLEDs with increasing the operating voltage from 7 V to 16 V.
Figure S15. EL spectra of WOLEDs with increasing the operating voltage from 6 V to 13 V.