Chiral binaphthyl-linked BODIPY analogues: synthesis and spectroscopic properties

Yanping Wu, a Sisi Wang, a Zhifang Li, a Zhen Shen b and Hua Lu, a *

a. Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 310012, P. R. China. E-mail: hualu@hznu.edu.cn;
b. School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China.

I.1 Materials and instrumentations .. S2

II. Supplementary Figures .. S3-S4

III. ¹H NMR ... S5-S7
I. Materials and instrumentations

All reagents were obtained from commercial suppliers and used without further purification unless otherwise indicated. All air and moisture-sensitive reactions were carried out under nitrogen atmosphere in oven-dried glassware. Glassware was dried in an oven at 120 °C and cooled under a stream of inert gas before use. Both dichloromethane and triethylamine were distilled over calcium hydride. 1H NMR spectra were recorded on a Bruker DRX400 spectrometer and referenced to the residual proton signals of the solvent. HR-MS were recorded on a Bruker Daltonics microTOF-Q II spectrometer. All the solvents employed for the spectroscopic measurements were of UV spectroscopic grade (Aldrich).
II. Supplementary Figures

Figure S1. Absorption spectra of (R)-2 (R)-4 in hexane (Top) and CH₂Cl₂ (Bottom).
Figure S2. Theoretical CD spectra of (R)-2 (top) and (R)-4 (bottom) calculated using the CAM-B3LYP-TDDFT method. Rotational strengths (R) are given in cgs (10^-40 erg esu cm/Gauss).
III. 1H NMR

LZF-WYP-ENO
PROTON CDCl3 (D:\20151026)

LZF-WYP-SNO
PROTON CDCl3 (D:\20151102)