Synergistic Combination of Atomic Scale Structural Engineering and Panoscopic Approach in p-type ZrCoSb-based half-Heusler thermoelectric materials for high ZT”.

N. S. Chauhan1,2, A. Bhardwaj1,2, T. D. Senguttuvan1,2 R. P. Pant2,3 R.C. Mallik4 and D.K. Misra*1,2

1Physics of Energy Harvesting Division, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi-110012.

2Academy of Scientific & Innovative Research (AcSIR), CSIR-National Physical Laboratory (CSIR-NPL) Campus, New Delhi-110012, India.

3EPR Spectroscopy Section, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi-110012.

4Department of Physics, Indian Institute of Science, Bangalore, 560 012, India.

SUPPLEMENTARY INFORMATION

The SEM morphologies and corresponding energy dispersive X-ray analysis (EDAX) spectrum recorded from the each of the composition of ZrCo1+xSb0.9Sn0.1 (x=0.01, 0.03, 0.05 and 0.07) are shown in Fig S1 indicating a clear two phase contrast and compositions very close to their respective nominal compositions. Figure S1(a, b, c & d) envisages the increasing FH inclusions within the HH matrix with increasing content of excess Co in compositions ZrCo1+xSb0.9Sn0.1 (x=0.01, 0.03, 0.05 and 0.07). Interestingly, one can clearly notice the increasing size of FH inclusions and its multiple length scales (S1c, e & f) with increasing FH fractions. The compositional analysis was performed employing EDAX to verify the homogeneities of the samples. A representative EDS spectrum and quantification of elements of ZrCo1+xSb0.9Sn0.1 (x=0.01, 0.03, 0.05 and 0.07) have been displayed in Fig S1 showing all constituent elements and quantification of composition obtained from the average of values taken at 8 positions shown in the Insets reveals compositions close to the corresponding nominal compositions. The compositions of HH and FH in all the compositions ZrCo1+xSb0.9Sn0.1 have been quantified and averaged from values taken at 8 positions and no obvious impurities phase were observed other than HH and FH in any of the composite samples. A representative EDS spectrum and quantification of elements for the best performing sample ZrCo1+xSb0.9Sn0.1 have been presented for each composition.
Figure. S1. The back scattered SEM micrograph along with representative EDS spectrum and quantification of elements of HH (1-x)/FH(x), ZrCo$_{1+x}$Sb$_{0.9}$Sn$_{0.1}$ (x=0.01, 0.03, 0.05 and 0.07).