Supplementary Information

Mesoporous carbon-imbedded W_2C composite as flexible counter electrodes for dye-sensitized solar cells

Ling Li, a Huidong Sui, a Wenming Zhang, a* Xiaowei Li, a Kun Yang, b* Anders Hagfeldt c and Mingxing Wu d*

a Hebei Key Lab of Optic-electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding, 071002, P. R. China. E-Mail: wmzhanghbu@163.com

b College of Quality and Technical Supervision, Hebei University, Baoding, 071000, China, P. R. China. E-mail: hbuyangkun@163.com.

c Laboratory for Photomolecular Science (LSPM), Swiss Federal Institute of Technology at Lausanne (EPFL), CH-1015 Lausanne, Switzerland

d Key Laboratory of Inorganic Nano-materials of Hebei Province, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, 050024, China. Tel. & Fax: +86-311-80787438, Email: mingxing.wu@mail.hebtu.edu.cn
Fig. S1 TEM image of the prepared mesoporous carbon.

Fig. S2 EDS of prepared W₂C/MC

Fig. S3 The N₂ sorption isotherm of W₂C.
Fig. S4 The N₂ sorption isotherm of W₂C/MC.

![Graph showing N₂ sorption isotherm of W₂C/MC.]

Fig. S5 Molecular structure of T⁻ and T₂.

![Molecular structures of T⁻ and T₂.]

Table S1 Photovoltaic parameters of the iodide electrolyte based-DSCs using MC, W₂C, and W₂C/MC counter electrodes.

<table>
<thead>
<tr>
<th>Counter electrodes</th>
<th>V_{oc}/mV</th>
<th>J_{sc}/mA cm⁻²</th>
<th>FF</th>
<th>PCE/%</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC</td>
<td>728</td>
<td>14.86</td>
<td>0.603</td>
<td>6.44</td>
</tr>
<tr>
<td>W₂C</td>
<td>726</td>
<td>13.59</td>
<td>0.648</td>
<td>6.40</td>
</tr>
<tr>
<td>W₂C/MC</td>
<td>744</td>
<td>15.23</td>
<td>0.672</td>
<td>7.61</td>
</tr>
</tbody>
</table>

V_{oc}: open-circuit voltage, J_{sc}: short-circuit current density, FF: fill factor, PCE: power conversion efficiency.