Support Information

Proposed electron transmission mechanism between Fe$^{3+}$/Co$^{2+}$ and Fe$^{3+}$/Fe$^{3+}$ in spinel structure and its practical evidence on quaternary Fe$_{0.5}$Ni$_{0.5}$Co$_2$S$_4$

Hualiang Lv,a Haiqian Zhang,a Baoshan Zhang,b Guangbin Ji,a* Yun He,c Qing Linc

aCollege of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China

bSchool of Electronic Science and Engineering, Nanjing University, Nanjing 210093, P. R. China

cCollege of Physics and Technology, Guangxi Normal University, Guilin 541004, China

*Corresponding Author:

Prof. Dr. Guangbin Ji.

Tel: +86-25-52112902; Fax: +86-25-52112626

E-mail: gbji@nuaa.edu.cn
Table S1. The etching parameters of the two samples.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Etching element</th>
<th>Source Gun Type</th>
<th>Total acquisition time</th>
<th>Number of Energy steps</th>
<th>Energy step Size</th>
<th>Etching Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe₀.₅Ni₀.₅Co₂O₄</td>
<td>Ar ion</td>
<td>Al Kα</td>
<td>1 min 8.0 secs</td>
<td>1361</td>
<td>1.00 eV</td>
<td>~3000 s</td>
</tr>
<tr>
<td>Fe₀.₅Ni₀.₅Co₂S₄</td>
<td>Ar ion</td>
<td>Al Kα</td>
<td>1 min 8.0 secs</td>
<td>1361</td>
<td>1.000 eV</td>
<td>~3000 s</td>
</tr>
</tbody>
</table>

Figure S1. XPS data of Fe₀.₅Ni₀.₅Co₂O₄ and Fe₀.₅Ni₀.₅Co₂S₄ treated by Ar-cluster etching technique: (a, c, e): Co 3/2p, Ni 3/2p, Fe 3/2p of Fe₀.₅Ni₀.₅Co₂O₄; (b, d, f) Co3/2p, Ni 3/2p, Fe 3/2p of Fe₀.₅Ni₀.₅Co₂S₄.

Figure S2. The Mössbauer of Fe₀.₅Ni₀.₅Co₂O₄ and Fe₀.₅Ni₀.₅Co₂S₄.
According to the Isomer shift value, we can get information that the Fe ions in both two samples presented tervalence. Besides, Fe$^{3+}$ only can be found at B sites.$^{1-2}$