Supporting Information

Water dispersed fluorescent organic aggregates for detection of picomolar ClO₄⁻ in water, soil and blood serum and atto g by contact mode

Rahul Kumar, Sana Sandhu, Prabhpreet Singh* and Subodh Kumar*

Corresponding author. Address: Department of Chemistry, UGC Centre for Advanced Studies, Guru Nanak Dev University, Amritsar 143 005, India.

Corresponding author. Mobile: +91 9872361528.

E-mail address: subodh.chem@gndu.ac.in; prabhpreet.chem@gndu.ac.in

S.No. page
1. Experimental Detail: 1-3
 General Remarks
2. Spectral analysis of compounds CS-1, CS-2, and 3 5-8
3. UV-Vis, Fluorescence and DLS studies of CS-1 and 9-13
 Job’s plot of CS-1/2
4. DFT Studies of CS-1 and CS-2 13-14

1. Experimental Details

General Remarks:
All reagents were purchased from commercial suppliers (Aldrich, Across, SDFCL, Spectrochem etc.) and used without further purification. Solvents were purified and dried by standard methods prior to use. 1-(4-Biphenyl)benzimidazole (1) was synthesized by CuI, benzotriazole catalyzed N-arylation of benzimidazole with 4-bromobiphenyl as reported in literature. TLC analyses were performed on silica gel plates and column chromatography was carried out over silica gel (100 - 200 mesh).

¹H and ¹³C NMR spectra were recorded on BRUKER Bio spin AVANCE-III FT NMR HD-500 using CDCl₃ or DMSO-d₆ as solvent and tetramethylsilane (TMS) as internal standard. Data are reported as follows: chemical shifts in ppm relative to the tetramethylsilane (TMS) as an internal
standard, coupling constants J in Hz; multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet). HRMS spectra were recorded on Brucker MicroToff/QII. The time resolved fluorescence spectra were recorded with ISS Chronos-BH time-resolved fluorescence spectrophotometer. DLS experiments were performed on Malvern-Zetasizer.

For UV-Vis, fluorescence, DLS and FESEM studies, all the solutions were prepared in deionized water obtained from ULTRA UV/UF Rions Lab Water System Ultra 370 series.

UV-Vis and fluorescence studies. UV-Vis studies were carried out on Shimadzu UV-2450 machine using slit width of 1.0 nm and matched quartz cells. The cell holder was thermo stated at 25.0 ± 0.2°C. The fluorescence experiments were performed on Shimadzu 2450 and BH-CHRONOS fluorescence spectrophotometers with a quartz cuvette of path length 1 cm. The cell holder was thermo stated at 25.0 ± 0.2°C. All absorption and fluorescence scans were saved as ASCII files and were further processed in Microsoft Excel™ to produce all graphs shown. The stock solutions of CS-1 and CS-2 (1 mM) were prepared in DMSO. For experiments with CS-1, 3 ml of the solution containing CS-1 (60 µL, 0.1mM) and 2.94 mL HEPES buffer (0.05 M, pH 7.4) were taken in cuvette. Stock solutions (0.1 M) of sodium salts (Na⁺X⁻), where X = CN⁻, F⁻, Cl⁻, Br⁻, I⁻, ClO₄⁻, NO₃⁻, SO₄²⁻, HSO₄⁻, SCN⁻, AcO⁻ and H₂PO₄⁻ were prepared in deionized millipore water and were diluted as required. During titration experiments, after addition of each aliquot of ClO₄⁻ solution, the solution was allowed to remain stable for 2 minutes.

DLS and SEM sample preparation. The stock solutions of CS-1 (1 mM, DMSO) and water were filtered through 0.02 micron filter membrane to remove interfering impurities. Solutions of CS-1 (H₂O - 2% DMSO) and its mixtures with different concentrations of ClO₄⁻ were prepared. 2 ml of each of these solutions was taken in glass cuvette to record the DLS spectrum at 25 °C. The solutions prepared for DLS experiments were used for preparing thin films for SEM recording. 10 µL of each of the solution was added on the pre-cleaned surface of the separate glass slide and was allowed to dry in the incubator at 25 °C. The dried films were coated with Au before recording SEM images. The scanning electron microscope (SEM) images were obtained with a field emission scanning electron microscope SEM JEOL JSM-6610LV.

Paper strips preparation. Whatman filter paper strips (1 cm x 1 cm) were dipped into aqueous DMSO solution of CS-1 (0.1 mM) and were dried under vacuum at room temperature. These paper strips were used for naked eye (under 365 nm light) visualization of 10⁻¹⁵ to 10⁻⁹ M ClO₄⁻.
solution. The 10^{-15}, 10^{-14}, 10^{-13}, 10^{-12}, 10^{-11} M solutions of ClO$_4^-$ and 10^{-11} M, 10^{-9} M solution of all other anions were prepared in water and 6 μl aliquot of each of these solutions was added on separate paper strip. For control experiment, drop of water alone was added on the CS-1 coated paper strip. The fluorescence spectra of paper strips bearing ClO$_4^-$ ions were also recorded using front surface steady-state fluorescence on ISS Chronos BH fluorescence spectrophotometer.

Blood Serum. A real blood sample of a medically fit person was used for the experiments. The blood serum was isolated by centrifugation of the fresh blood sample after fasting at 4000 rpm for 30 min at 4 °C. The stock solution of the blood serum was prepared in 10 ml volumetric flask by diluting 1ml of serum with HEPES buffer (0.05 M) at pH 7.40.

Quantum yield calculations. Fluorescence quantum yields (Φ_s) were determined by using an optically matching solution of QHS ($\Phi_r = 0.54$ in 0.1 M H$_2$SO$_4$) as standard at excitation wavelength of 290 nm and quantum yield is calculated using equation

$$\Phi_s = \Phi_r \times \frac{1}{10^{-\text{As}} - 1} \times \frac{N_s^2}{N_r^2} \times \frac{D_s}{D_r}$$

Φ_s and Φ_r are the radiative quantum yields of sample and the reference, respectively. D_s and D_r are the respective areas of emission for the sample and reference, respectively. A_s and A_r are the absorbance; L_s and L_r are the lengths of the absorption cells; N_s and N_r are the refractive indices of the sample and reference solutions, respectively.

Detection limit. The detection limit was calculated based on the fluorescence titration. To determine the S/N ratio, the emission intensity of CS-1 (2 μM) without perchlorate was measured by 10 times and the standard deviation of blank solution (without addition of perchlorate) measurements was determined. Under the present conditions, a good linear relationship between the fluorescence intensity and the perchlorate concentration could be obtained in the $10^{-11} – 10^{-7}$ M ($R^2 = 0.9929$) for CS-1. The detection limit is then calculated with the equation:

Detection limit = $3\sigma_b / m$
Where, σ_{bi} is the standard deviation of blank solution (without addition of perchlorate) measurements, m is the slope between intensity versus sample concentration. The detection limit was measured to be 10 pM for CS-1 S/N = 3.
Figure S1. 1H NMR and 13C NMR of CS-1
Figure S2. 1H NMR and 13C NMR of CS-2
Figure S3. HRMS spectra of CS-1
Figure S4. HRMS spectra of CS-2
Figure S5. Change in absorption and emission spectrum of CS-1 with increasing volume fractions of water.

Figure S6: (X) DLS studies of CS-1 (HEPES- DMSO 98:2) in the presence of ClO$_4^-$: (a) only CS-1; (b) CS-1 + ClO$_4^-$ (10$^{-11}$ M); (c) CS-1 + ClO$_4^-$ (10$^{-9}$ M); (d) CS-1 + ClO$_4^-$ (10$^{-6}$ M); (Y) DLS of CS-1 (a) after 1h (b) after 24h; DLS of CS-1+10$^{-5}$ M ClO$_4^-$ in water (c) after 1h (d) after 24 h.
Figure S7. Effect of various anions (100 µM) on absorption spectrum of CS-1 (2 µM) in HEPES buffer – 2% DMSO (pH 7.4).

Figure S8. (A) Effect of various anions (100 µM) on emission spectrum (λex = 290 nm) of CS-1 (2 µM) in HEPES buffer – 2% DMSO (pH 7.4); (B) Effect of various aromatic hydrocarbons (50 µM) on the emission spectrum (λex = 290 nm) of CS-1 (2 µM) in HEPES buffer – 2% DMSO (pH 7.4).
Figure S9. Effect of different water - DMSO ratio (80 : 20 and 98 : 2) on the sensitivity of CS-1 for determination of ClO$_4^-$.

Figure S10. Job’s plot of chemosensor CS-1 (A) through absorption, (B) through emission in HEPES buffer – 2% DMSO solution (pH 7.4).
Figure S11. (A) Effect of different anions on the fluorescence quenching by ClO$_4^-$ (1) CS-1 only; (2) ClO$_4^-$ only; (3) F$^-$ + ClO$_4^-$; (4) Cl$^-$ + ClO$_4^-$; (5) Br$^-$ + ClO$_4^-$; (6) I$^-$ + ClO$_4^-$; (7) CN$^-$ + ClO$_4^-$; (8) OH$^-$ + ClO$_4^-$; (9) SO$_4^{2-}$ + ClO$_4^-$; (10) HSO$_4^-$ + ClO$_4^-$; (11) H$_2$PO$_4^-$ + ClO$_4^-$; (12) AcO$^-$ + ClO$_4^-$; (13) NO$_3^-$ + ClO$_4^-$; (14) SCN$^-$ + ClO$_4^-$. (B) Effect of various aromatic hydrocarbons (50 µM) on the emission spectrum ($\lambda_{ex} = 290$ nm) of CS-1 (2 µM) in the presence of ClO$_4^-$ ions (1000 nM) (1) ClO$_4^-$ only; (2) Benzene; (3) Toluene; (4) Phenol; (5) Benzoic acid; (6) Naphthalene; (7) Anthracene (error less than 3.1%).

Figure S12: Effect of pH on the fluorescence intensity of CS-1 (H$_2$O – DMSO, 98:2)
Figure S13. Job’s plot of CS-2 in HEPES buffer – 2% DMSO solution (pH 7.4).

Figure S14. 1H NMR titration of CS-1 with ClO$_4^-$ in DMSO - Water (7:3) ratio.
Figure S15. 1H NMR titration of CS-2 with ClO$_4^-$ in DMSO - Water (7:3) ratio.

Figure S16. Isosurface energy map of (A) CS-1 with ClO$_4^-$ and (B) CS-2 with ClO$_4^-$.
Figure S17. (A) HOMO of CS-1, (B) LUMO of CS-1, (C) HOMO of CS-1 + ClO$_4^-$ Complex, (D) LUMO of CS-1 + ClO$_4^-$.

Figure S18. Emission spectrum of CS-1, blood serum (BS) and CS-1 + blood serum in 98% aqueous buffered solution.