Supporting information

Wet process feasible candlelight OLED

Jwo-Huei Jou1*, Yu-Ting Su1, Shih-Hao Liu1,2, Zhe-Kai He1, Snehasis Sahoo1, Hui-Huan Yu1, Sun-Zen Chen3, Ching-Wu Wang4, and Jia-Ren Lee2

1Department of Materials Science and Engineering, National Tsing Hua University, Taiwan
2Department of Physics, National Kaohsiung Normal University, Taiwan
3Center for Nanotechnology, Materials Science, and Microsystems, National Tsing Hua University, Taiwan
4Graduate Institute of Opto-Mechatronics, National Chung Cheng University, Taiwan

E-mail: jjou@mx.nthu.edu.tw
The J-V-L graphs along with related discussions of all the reported OLEDs in this work are shown in figures S1-S5.

(a)

Figure S1. The effects of VPEC, HTL, incorporation on the (a) current density, and (b) luminance of the studied candlelight OLED.

(b)
Figure S2. The effects of different red doping concentrations on the (a) current density, and (b) luminance of the studied candlelight OLED.
Figure S3. The effects of different yellow doping concentrations on the (a) current density, and (b) luminance of the studied candlelight OLED.
Figure S4. The effects of different yellow doping concentrations on the (a) current density, and (b) luminance of the studied candlelight OLED.
Figure S5. The host effects on the (a) current density, and (b) luminance of the studied candlelight OLED.