Electronic Supplementary Information (ESI) for

Tunable electronic structure and enhanced optical properties in quasi-metallic hydrogenated/fluorinated SiC heterobilayer

Xianping Chen,*a,b,c,† Junke Jiang,b,† Qihua Liang,b Ruishen Meng,a,b Chunjian Tan,a,b Qun Yang,a,b Shengli Zhang,d and Haibo Zeng* d

a Key Laboratory of Optoelectronic Technology & Systems, Education Ministry of China, Chongqing University, Chongqing 400044, China.
b College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China.
c School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, China.
d Institute of Optoelectronics & Nanomaterials, College of Material Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.

† These authors contributed equally to this work.

*Correspondence authors: Xianping Chen (E-mail: xianpingchen@cqu.edu.cn); Haibo Zeng (E-mail: zeng.haibo@njust.edu.cn).
FIG. S1. Phonon dispersions along high-symmetry directions for F-SiC monolayer.
FIG. S2. Side (upper) and top (bottom) view of the representative configurations of h/f-SiC bilayer in four different stacking patterns with relative energy (in unit of meV/unit cell) to the lowest-energy configuration.