High-performance self-powered broadband photodetector
based on CH$_3$NH$_3$PbI$_3$ Perovskite/ZnO nanorod arrays heterostructure

Jichao Yu$^{a,+}$, Xu Chen$^{a,+}$, Yi Wang$^{b,+}$, Hai Zhoua, Mengni Xuea, Yang Xua,
Zhaosong Lia, Cong Yea, Jun Zhanga, Peter A. van Akenb, Peter D. Lunda,c,
Hao Wanga,*

a Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials,
Faculty of Physics and Electronic Science, Hubei University, Wuhan 430062, China
b Stuttgart Center for Electron Microscopy, Max Planck Institute for Solid State
Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
c Department of Applied Physics, Aalto University, FI-00076 Aalto, Espoo, Finland

*Corresponding author. E-mail address: nanoguy@126.com
+These authors contribute equally to this work.
Figure S1 XRD pattern of the pristine FTO substrate.
Figure S2 The absorption spectra of ZnO nanorods and CH$_3$NH$_3$PbI$_3$ on ZnO nanorods.
Figure S3 High-angle annular dark-field (HAADF) scanning transmission electron microscopy (STEM) images and EDXS analysis. (a) Low magnification HAADF-STEM image of ZnO-nanorods. (b) Atomic-column resolved HAADF image of a ZnO nanorod of the highlighted area in Fig. S2 (a). An atomic structure model of the hexagonal phase of ZnO along [010] projection is superimposed on the HAADF image. (c) STEM-EDXS spectrum of ZnO nanorods in Fig. S2 (a), in which Pb-M and I-L lines are clearly visible.
Figure S4 Photocurrent rise and decay of the device measured at a bias of 0 V.
Figure S5 Photoelectric response curves of the original value (a) and after three months of illumination (b).