Supporting Information

Highly Twisted Triarylborane-based Biphenyl as Efficient Hosts for Blue and Green Phosphorescent OLEDs

Chen Wang, Yi Yuan, Sheng-Yong Li, Zuo-Bang Sun, Zuo-Quan Jiang, and Cui-Hua Zhao

School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Jinan 250100, P.R. China. E-mail: chzhao@sdu.edu.cn

Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, P.R. China. E-mail: zqjiang@suda.edu.cn
Figure S1. UV-Vis absorption and fluorescence spectra of \(o,o' \)-substituted biphenyls in cyclohexane.

Figure S2. UV-Vis absorption and fluorescence spectra of \(p,p' \)-substituted biphenyls in cyclohexane.

Figure S3. Cyclic voltammograms of \(o,o' \)-NPh₂ and \(p,p' \)-NPh₂.
Figure S4. TGA analysis of o,o’-NPh₂

Figure S5. Performance of phosphorescent OLEDs using p,p’-NPh₂ as a host: a) Plots of EQE (solid) and power efficiency (hollow) as a function of luminescence; b) Plots of current density (solid) and luminescence (hollow) as a function of voltage.