Electronic Supplementary Information

Thermally cross-linkable thermally activated delayed fluorescence materials for efficient blue solution-processed organic light-emitting diodes

Kaiyong Sun, Xiangfei Xie, Yao Liu, Wei Jiang,*, Xinxin Ban, Bin Huang, and Yueming Sun*

School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210096, Jiangsu, P. R. China

*e-mail: 101011462@seu.edu.cn (W. Jiang); e-mail: sun@seu.edu.cn (Y. Sun).

Figure S1. TGA of P9 at a heating rate of 10 °C min\(^{-1}\).

Figure S2. (a) PL spectra of DV-CDBP in toluene at 77K and DV-MOC-DPS at 77K with 10 ms delay; (b) PL spectra of cross-linked DV-CDBP film at 77K.
Figure S3. Oxidation part of the CV curves of DV-CDBP and DV-MOC-DPS in dichloromethane.

Figure S4. Absorption spectra of P9 in the thin film and Oxidation part of the CV curve of P9 (inset) in dichloromethane.
Figure S5. (a) Current efficiency versus luminance for the devices. (b) Power efficiency versus luminance for the devices.

Table S1. Comparison of the devices with P6, P9 and P12 as emitting layers

<table>
<thead>
<tr>
<th>Emitter</th>
<th>V_{on}^{a} (V)</th>
<th>λ_{peak}^{b} (nm)</th>
<th>EQE$_{max}^{c}$ (%)</th>
<th>CE$_{max}^{d}$ (cd A$^{-1}$)</th>
<th>PE$_{max}^{e}$ (lm W$^{-1}$)</th>
<th>CIE $(x, y)^{f}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>P6</td>
<td>5.3</td>
<td>444</td>
<td>1.4</td>
<td>1.3</td>
<td>0.7</td>
<td>(0.12, 0.13)</td>
</tr>
<tr>
<td>P9</td>
<td>5.3</td>
<td>444</td>
<td>2.0</td>
<td>1.6</td>
<td>0.9</td>
<td>(0.12, 0.13)</td>
</tr>
<tr>
<td>P12</td>
<td>5.3</td>
<td>448</td>
<td>1.2</td>
<td>1.3</td>
<td>0.7</td>
<td>(0.12, 0.15)</td>
</tr>
</tbody>
</table>

aThe driving voltage at 1 cd m$^{-2}$. bEL peak wavelength. cMaximum external quantum efficiency. dMaximum current efficiency. eMaximum power efficiency. fThe Commission Internationale de L’Eclairage coordinates.