Electronic supporting information

Odd-even effects of an asymmetric dimer on the double-twist structure in an amorphous blue phase

Tetsu Hirosea,b and Atsushi Yoshizawa*a

aDepartment of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
E-mail: ayoshiza@hirosaki-u.ac.jp

bTohoku Chemical Corporation, 1-3-1 Kanda, Hirosaki, Aomori, 036-8655, Japan

1. Fig. S–1 Phase transition behaviour of chiral mixtures consisting of host LC [(90–X) wt\%], I–8 (X wt\%), and ISO–(6OBA)\textsubscript{2} (10 wt\%).

2. Fig. S–2 Optical transmittances of the mixture consisting of host LC (88.4 wt\%), I–8 (1.6 wt\%) and ISO–(6OBA)\textsubscript{2} (10 wt\%) as a function of an AC field at 60 Hz in the induced cubic BP at 65 °C. Circles show transmittances when the electric filed was set at 0° to the analyzer. Triangles show those when the electric filed was set at 45° to the polarizing axis of both polarizers.
Fig. S–1 Phase transition behaviour of chiral mixtures consisting of host LC [(90–X) wt%], I-8 (X wt%), and ISO–(6OBA)₂ (10 wt%).
Fig. S–2 Optical transmittances of the mixture consisting of host LC (88.4 wt%), I–8 (1.6 wt%) and ISO–(6OBA)$_2$ (10 wt%) as a function of an AC field at 60 Hz in the induced cubic BP at 65 °C. Circles show transmittances when the electric filed was set at 0° to the analyzer. Triangles show those when the electric filed was set at 45° to the polarizing axis of both polarizers.