Supporting Information

Gamma Ray Shifted and Enhanced Photoluminescence of Graphene Quantum Dots

Tao Wang,*ac Claas J. Reckmeier,*b Shunkai Lu,a Yanqing Li,*a Yafei Cheng,a Fan Liao,a Andrey L. Rogach,b Mingwang Shao*a

aInstitute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China

bDepartment of Physics and Materials Science and Centre for Functional Photonics (CFP), City University of Hong Kong, Kowloon, Hong Kong S.A.R.

cSchool of Chemistry and Chemical Engineering, Anhui Provincial Laboratory of Optoelectronic and magnetism Functional Materials, Anqing Normal University, Anqing, Anhui 246001, P.R. China.

*Corresponding authors. E-mail address: yqli@suda.edu.cn (Y. Q. Li), mwshao@suda.edu.cn (M. W. Shao)

Both authors have contributed equally to this work.
1. Experimental Section

1.1. Materials.

Graphene was purchased from Nanjing XFNano Materials Technology Company. Pyrene was purchased from J&K Chemical Science and Technology Ltd. Other reagents were of analytical reagent grade and were used without further purification. Double-distilled water was used throughout the work.

1.2. Synthesis of GQD-OH, GQD-NH$_2$, and m-GQDs.

GQD-OH, GQD-NH$_2$, and m-GQDs were synthesized by modifying a previously reported method.22 Briefly, 1,3,6-trinitropyrene (Figure S1b) was obtained through filtering the nitration production of pyrene (Figure S1a) under refluxing and stirring in HNO$_3$ at 80 °C for 12 h. 0.15 g trinitropyrene was dispersed in 0.2 M NaOH solution (35 mL) by ultrasonication for 2 h. The suspension was transferred into a 50 mL Teflon-lined autoclave and heated at 180 °C for 10 h. After cooling to room temperature, the suspension was filtered through 0.22 μm microporous membrane to remove the insoluble products. The filtrate was dialyzed in a dialysis bag (retained molecular weight: 3500 Da) and the GQD-OH were obtained. The synthetic process of GQD-NH$_2$, and m-GQD were similar to that of the GQD-OH except for the substitution of NaOH solution with 1.2 M ammonia or the mixed solution containing 0.4 M ammonia and 1.5 M hydrazine, respectively.
1.3. Photoluminescence quantum yields measurements.

The emission quantum yields of GQDs were estimated by reference to quinine sulfate ($\Phi_R = 58\%$ at 354 nm excitation) and Rhodamine 6G ($\Phi_R = 94\%$ at 490 nm excitation). The equation used for QY calculations was as follows:

$$\Phi = \Phi_R \times \left(\frac{I}{I_R} \right) \times \left(\frac{A_R}{A} \right) \times \left(\frac{\eta^2}{\eta_R^2} \right)$$

where Φ is the QY, I is the measured integrated emission intensity, η is the refractive index of the solvent, and A is the optical density. In order to minimize re-absorption effects, absorption in the 10 mm quartz cuvette was kept below 0.10 at the excitation wavelength. The subscript R refers to the reference fluorophore of the known quantum yield.
2. Characterization of GQD-OH.

Figure S2. Wide-scan XPS spectrum of the pristine GQD-OH.

Table S1. The relative atomic percentages of the 0 kGy, 50 kGy and 500 kGy irradiated GQD-OH obtained from the deconvoluted C1s XPS peak in ambient condition.

<table>
<thead>
<tr>
<th></th>
<th>C-(\text{C}/\text{C}=\text{C})</th>
<th>C-(\text{O}-\text{C}/\text{C}=\text{OH})</th>
<th>(\text{C}=\text{O})</th>
<th>O-(\text{C}=\text{O})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 kGy</td>
<td>77</td>
<td>14</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>50 kGy</td>
<td>55</td>
<td>30</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>500 kGy</td>
<td>66</td>
<td>20</td>
<td>10</td>
<td>4</td>
</tr>
</tbody>
</table>
Figure S3. UV-Vis absorption spectrum of pristine GQD-OH.

Figure S4. PL spectra of the irradiated GQD-OH with doses from 100 to 400 kGy at different excitation wavelengths.
Figure S5. FTIR spectra of GQD-OH with the irradiation doses at 0, 50 and 500 kGy.

Table S2. Elemental Analysis of pristine, 50 and 500 kGy irradiated GQD-OH in ambient conditions.

<table>
<thead>
<tr>
<th></th>
<th>C(wt%)</th>
<th>H(wt%)</th>
<th>O(wt%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 kGy</td>
<td>74.22</td>
<td>3.26</td>
<td>22.52</td>
</tr>
<tr>
<td>50 kGy</td>
<td>56.29</td>
<td>3.81</td>
<td>39.90</td>
</tr>
<tr>
<td>500 kGy</td>
<td>65.36</td>
<td>3.50</td>
<td>31.14</td>
</tr>
</tbody>
</table>

Figure S6. High-resolution TEM image of (a) the pristine and (b) 500 kGy irradiated GQD-OH in ambient conditions.
Figure S7. Wide-scan XPS spectra of the irradiated GQD-OH with 50 and 500 kGy doses in ambient conditions.

Figure S8. High-resolution XPS O1s spectra of irradiated GQD-OH with (a) 50 kGy and (b) 500 kGy dose in ambient conditions. The deconvolution of O1s spectra of irradiated GQD-
OH yields the following four peaks: peak I (530.4-530.6 eV) corresponding to C=O groups in carbonyl and quinone; peak II (531.8-532.2 eV) to C=O groups in carboxyl groups; peaks III (532.2-533) to hydroxyls or ethers; and peak IV (534.4-535.5) to chemisorbed oxygen and/or water.

Figure S9. Wide-scan XPS spectrum of the 50 kGy irradiated GQD-OH in the presence of ethanol.

Figure S10. UV-Vis absorption spectrum of 0-500 kGy irradiated GQD-OH.
Atomic force microscopy (AFM) was used to investigate the height of GQD-OH. According to AFM measurements, the height of GQD-OH before and after gamma irradiation didn’t change obviously, which is nearly 5 nm. The GQD-OH was synthesized by a wet chemistry method, which was difficult to produce a single layer carbon cores.

Figure S11. AFM images of (a) pristine, (b) 50 kGy and (c) 500 kGy irradiated GQD-OH in ambient conditions.
3. Investigations of other GQDs.

3.1. Irradiation of GQDs-NH₂.

To further confirm the PL modulation and stability of the GQDs through irradiation with gamma-ray, several other types of GQDs containing different chemical groups were also investigated. The PL properties of irradiated GQD-NH₂ are shown in Figure S12. The optimal excitation peak of GQD-NH₂ changed from 480 to 400 nm after 500 kGy irradiation, showing similar variation trend with irradiated GQD-OH.

![Figure S12](image-url). PL spectra of the irradiated GQD-NH₂ with doses from 0 to 500 kGy in ambient conditions.
3.3. Irradiation of m-GQDs.

The PL of m-GQDs exhibited similar variation trend with the irradiated GQD-OH (Figure S13). The optimal excitation peak of m-GQDs changed from 420 to 400 nm after 500 kGy irradiation.

Figure S13. PL spectra of the irradiated m-GQDs with doses from 0 to 500 kGy in ambient conditions.
Figure S14. The cellular viability of 4T1 cancer cells with different concentrations of pristine, 50 and 500 kGy irradiated GQD-OH. C₀ is the concentration of the pristine GQD-OH solution.
Figure S15. Diagram of the synthesis of GQD-OH.
Figure S16. UV-Vis spectra of the irradiated GQD-OH containing ethanol with the dose of 0, 50 and 500 kGy.