Supporting Information

Reduction of singlet-triplet energy gap of thermally activated delayed fluorescence emitter by molecular interaction between host and emitter

L. Xie,a,d G. Han,b,c Y. Chen,a,c H. Wang,a,c X. Kong,a,c X. Wei,a,c J. Liu,a,c Y. Yi,b,c B. Chen,d P. Wang,a,c and Y. Wang*a,c

*aKey Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
bKey Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
cUniversity of Chinese Academy of Sciences, Beijing, 100029, China
dCollege of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
eKey Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an 710069, China

*Email: wangy@mail.ipc.ac.cn
EXPERIMENTAL SECTION

Materials: TXO-PhCz was synthesized as reported previously. Poly(styrene sulfonic acid)-doped poly(3,4-ethylenedioxythiphene) (PEDOT:PSS, Baytron PVP A4083) was purchased from H.C. Starck GmbH. 1,1-bis[(di-4-tolylamino)phenyl] cyclohexane (TAPC), 1,3-bis[(4-tert-butylphenyl)-benzene (TmPyPB), and TPBI with a purity of more than 99% was purchased from Jilin Optical and Electronic Materials Company, which were purified by repeated temperature-gradient vacuum sublimation. LiF was purchased from Sigma-Aldrich.

Photophysical characterization: UV-vis spectra and fluorescence spectra were obtained with Hitachi U-3900 and F-4600 spectrophotometers, respectively. The absolute fluorescence quantum yields of the solid films are measured with an integrating sphere. The transient PL decay and temperature dependence of the TXO-PhCz:TPBI or TXO-PhCz:mCP films were measured using a Edinburgh Instruments FLS920 spectrometer. $T_1$, $A_1$, $T_2$, $A_2$ were obtained from the multi-exponential fitting of the transient decay curves on a 200 μs scale. The fit parameters is $\text{fit} = A_1 \exp(-t/\tau_1) + A_2 \exp(-t/\tau_2)$. $\Phi_p$ and $\Phi_d$ were determined by using total PL quantum efficiency and the ratio between prompt and delayed components which was calculated from transient PL measurements.

Device fabrication: OLEDs were fabricated on patterned ITO-coated glass substrates with a sheet resistance of 15 Ω/□. Before device fabrication, the ITO glass substrates were ultrasonically cleaned with detergent, de-ionized water, acetone, and alcohol. The substrates were dried in an oven at 120°C and then treated with UV-ozone for 10 mins.
A layer of 30 nm thick PEDOT:PSS was spin-coated onto the pre-cleaned substrate and bake in a glovebox under a nitrogen environment (oxygen and water contents less than 1 ppm) at 120°C for 30 mins to extract residual water. Afterward, the substrates were transferred into a vacuum deposition system with a base pressure lower than $1 \times 10^{-6}$ mbar for organic semiconductor and metal deposition. The evaporation rate of organic semiconductors is about 1~2 Å/s, and the deposition rate of LiF is about 0.1 Å/s. The fabrication of OLEDs was finished by the Al electrode deposition with an evaporation rate of 10 Å/s. The thickness of evaporated films were monitored by frequency counter, and calibrated by Dektak 6M Profiler. The EL luminescence spectra and CIE color coordinates were measured by a Spectra scan PR655 photometer. The current-voltage-brightness characteristics were measured by using a computer-controlled Keithley source measurement unit (Keithley 2400 Source Meter) with a calibrated optical power meter of Newport company (1936R) under ambient atmosphere. The hole-only device and the electron-only device were fabricated with the similar procedure above.

**Fig. S1** The current density ($J$)-voltage ($V$) characteristics of single carrier transport devices. Hole-only device: ITO/PEDOT (40 nm)/TAPC (40 nm)/mCP (20 nm)/EML (30 nm)/WO$_3$ (10 nm)/Al (100 nm); Electron-only device: ITO/EML (30 nm)/TmPyPB (130 nm)/ LiF (1.8 nm)/Al (100 nm).
Fig. S2. The lifetime of the devices based on the TPBI and mCP host. The device structures: ITO/HAT-CN (10 nm)/TAPC (30 nm)/mCP (10 nm)/TPBi (mCP):5 wt% TXO-PhCz (30 nm)/TmPyPB (40 nm)/LiF (0.9 nm)/Al.