Supporting information

Water processable Prussian blue-polyaniline: polystyrene sulfonate nanocomposite (PB-PANI:PSS) for multi-color electrochromic applications

Chih-Wei Hu,1,* Tohru Kawamoto,2 Hisashi Tanaka,2 Akira Takahashi,2 Kyoung-Moo Lee,2 Sheng-Yuan Kao,3 Ying-Chih Liao,3 and Kuo-Chuan Ho3,4,*

1Structural Materials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2266-98, Anagahora, Shimo-Shidami, Moriyama-ku, Nagoya, Aichi 463-8560, Japan.
2Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan.
3Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan.
4Institute of Polymer Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan.

*Corresponding Authors:
E-mail: chih-wei.hu@aist.go.jp
E-mail: kcho@ntu.edu.tw
Fig. S1 XRD spectra of pure PB and PB-PANI:PSS nanocomposite.
SI.2 Calculation of the HOMO&LUMO level and band gap

We used the following equation as well as the onset potential of the CV diagram to calculate HOMO level:

\[E_{\text{HOMO}} = (E_{\text{ox}} - E_{1/2(\text{ferrocene})} + 4.8) \text{ eV} \]

The Ag/AgCl reference is -0.44 mV with reference to SCE, and Fc/Fc\(^+\) reference electrode is about +400 mV with reference to SCE in organic electrolyte (Chem. Rev. 1996, 96, 877). The potential value was adjusted by -444 mV vs. Fc/Fc\(^+\). According to the above information, the HOMO/LUMO and band gap values are calculated and listed below:

<table>
<thead>
<tr>
<th>Materials</th>
<th>PANI:PSS</th>
<th>PB-PANI:PSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOMO (eV)</td>
<td>4.55</td>
<td>4.50</td>
</tr>
<tr>
<td>LUMO (eV)</td>
<td>2.03</td>
<td>2.19</td>
</tr>
<tr>
<td>Band gap (eV)</td>
<td>2.52</td>
<td>2.31</td>
</tr>
</tbody>
</table>