Electronic Supplementary Information (ESI)

Low-Voltage, Simple WO$_3$-based Electrochromic Devices by Incorporating Anodic Species into the Electrolyte

Jaehyun Bae, a Haekyoung Kim, b, Hong Chul Moon c,* and Se Hyun Kim a,d,*

aDepartment of Advanced Organic Materials Engineering, Yeungnam University, Gyeongsan, North Gyeongsang 38541, South Korea

bSchool of Materials Science and Engineering, Yeungnam University, Gyeongsan, 38541, South Korea

cDepartment of Chemical Engineering, University of Seoul, Seoul 02504, South Korea

dSchool of Chemical Engineering, Yeungnam University, Gyeongsan, North Gyeongsang 38541, South Korea

* Corresponding authors. E-mail: hkkim@ynu.ac.kr (H.K.), hcmoon@uos.ac.kr (H.C.M.), shkim97@yu.ac.kr (S.H.K.)
Fig. S1 A cross-sectional SEM image of the prepared WO$_3$ film, in which a thickness of the film was determined as ~300 nm.
Fig. S2 Tapping mode AFM images of the prepared WO$_3$ film: (a) as-deposited, and (b) after thermal annealing at 60 °C in vacuum. The root-mean-square (rms) roughness of the film was characterized as 17.5 nm and 15.3 nm for the as-deposited and thermally treated film, respectively. Height profiles correspond to the white lines shown in AFM images.
Fig. S3 UV-vis spectra of the WO₃-based ECD without Fe at various applied voltages, showing the absence of ferrocene resulted in higher coloration voltages.
Fig. S4 UV-vis spectra changes as a function of applied voltages at different Fc concentrations of (a) 0.01 M, (b) 0.05 M, and (c) 0.10 M. The lithium perchlorate (LiClO₄) concentration was fixed at 0.50 M.