New Two-Dimensional Mn-based MXenes with Room-Temperature Ferromagnetism and Half-Metallicity

Junjie He,† Pengbo Lyu,† and Petr Nachtigall*,†

†Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, 128 43 Prague 2, Czech Republic

E-mail: petr.nachtigall@natur.cuni.cz

Table of Content:

Comparison of H and T structures of Mn\(_2\)C MXene page 2

Structural stability of Mn\(_2\)CF\(_2\) monolayer page 3

The band structure of Mn\(_2\)CF\(_2\) at HSE06 level of theory Spin charge density for Mn\(_2\)C and Mn\(_2\)CO\(_2\) page 4

PDOS for Mn\(_2\)CO\(_2\) page 5
1. Comparison of H and T structure

![H-structure vs. T-structure](image)

Fig. S1. The relative energy for H and T structure Mn2C monolayer.

![Site 1 and Site 2](image)

Fig. S2. Two possible sites for functional atoms/groups, site 1 and site 2 are shown in parts (a) and (b), respectively; top and side views are shown in upper and lower panels, respectively.
2. Structural stability of Mn$_2$CF$_2$ monolayer

To study the thermal stability of the Mn$_2$CF$_2$ MXenes monolayer, the \textit{ab initio} molecular dynamics (AIMD) simulations at 500 K in a canonical ensemble are performed using the Nosé heat bath approach. The phonon frequencies were calculated by using density functional perturbation theory (DFPT) approach as implemented in the PHONOPY code.$^{1, 2}$

![Image of graph showing total potential energy and phonon dispersion curves](image)

Fig. S3: (a) Variations of the total potential energy of Mn$_2$CF$_2$ monolayer during \textit{ab initio} molecular dynamics simulations at 500 K. (b) Phonon dispersion curves for Mn$_2$CF$_2$ monolayer.
3. The band structure of Mn$_2$CF$_2$ at HSE06 level.

![Band structure of Mn$_2$CF$_2$](image)

Fig. S4. The band structure of Mn$_2$CF$_2$ calculated at the HSE06 level. The red and blue curves represent the spin-up and spin-down channels, respectively.

![Spin charge density](image)

Fig. S5. The spin charge density for Mn$_2$C (a) and Mn$_2$CO$_2$ (b) are calculated, respectively.

The red and blue densities represent the spin-up and spin-down, respectively.
FigS6. PDOS of Mn d states (blue, red, and green) and C and O p states for Mn$_2$CO$_2$ (black and brown, respectively) are shown.

Reference
