Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2017

ESI for

Effect of ancillary ligands on the properties of

diphenylphosphoryl-substituted cationic Ir(III) complexes

Hongcui Yu, Chun Liu*, Zhenni Yu, Liyan Zhang and Jinghai Xiu* State Key Laboratory of Fine Chemicals, Dalian University of Technology, Linggong Road 2, Dalian 116024, China. Tel.: +86-411-84986182. E-mails: cliu@dlut.edu.cn; xiujh@dlut.edu.cn

Contents

Synthetic method and characterization of ligands and Ir(III) complexes. Page S2 – S5.

Fig. S1- S7. Photophysical and electrochemical properties of the Ir(III) complexes. Page S6 – S9.

Fig. S8. Oxygen sensing properties of the Ir(III) complexes. Page S10.

Fig. S9- S31. NMR and HRMS of ligands and Ir(III) complexes. Page S11 – S22.

References. Page S22.

Synthetic method and characterization of ligands and Ir(III) complexes

Scheme S1. Synthetic routes of the 2,2'-biimidazole-based N^N ancillary ligands.

Scheme S2. Chemical structures of studied ancillary ligands and synthetic routes of the cyclometalated Ir(III) complexes **POF1-POF6**.

The whole synthesis route of C^N cyclometalating ligand and N^N ancillary ligands were shown in Scheme S1 and Scheme S2. The N^N ancillary ligands (**phen**, **bpy** and **dMebpy**) were purchased from commercial suppliers and used without further purification.

2-(2',4'-difluorophenyl)pyridine (dFppy). The synthesis of **dFppy** was performed in an analogous procedure.¹ A mixture of 2,4-difluorophenylboronic acid (1.3 equiv.) and sodium carbonate (2.0 equiv.) was degassed, then $Pd(PPh_3)_4$ (3 mol%), 2-bromopyridine (1.0 equiv.), THF/distilled water (5 : 3 v/v) were added and refluxed for 24 h under nitrogen. After reaction, the mixture was added to brine (15 mL) and extracted with ethyl acetate (3 × 15 mL). The organic solvent was removed under vacuum, and the product was isolated by short-column chromatography.

2-(2',4'-difluoro-3'-(diphenylphosphoryl) phenyl) pyridine (POFdFppy). The synthesis of this ligand is by a modified version of a previously reported method.² 2-(2',4'-difluorophenyl)pyridine (**dFppy**) (9.4 mmol), 4 mL of lithium diisopropylamide (LDA) was added dropwise and the mixture was stirred for 1.5 h at -78 °C under nitrogen. Then, 2 mL of chlorodiphenylphosphine was added to the mixture and the solution was stirred overnight. The reaction mixture was added to brine (15 mL), extracted with ethyl acetate (3 × 15 mL) and dried over anhydrous MgSO₄. After removing the solvent, the residue was treated with CH₂Cl₂ (40 mL) and 40 mL of hydrogen peroxide (30%), and then stirred at room temperature for 3 h. The crude product was extracted with CH₂Cl₂ and the product was isolated by short-column chromatography.

2,2'-biimidazole (biim). Synthesis of this ligand was as outlined in the literature.³ A mixture of ammonium acetate (2.7 equiv.) in distilled water at 40 °C, 40% aqueous glyoxal solution (1.0 equiv.) was added dropwise over a period of 3 h. The mixture was stirred for 5 h at room temperature. The reaction mixture was filtered and washed multiple times with distilled water and acetone to give crude product. This material was added to ethylene glycol, heated to 180 °C and treated with decolorising carbon. Hot filtration was performed immediately, with further washings with distilled water and dried to give product.

1,1'-dimethyl-2,2'-biimidazole (dMebiim). This compound was prepared according to the procedure previously reported.³ 2,2'-biimidazole (**biim**) (1.0 equiv.) was added to a mixture of aqueous sodium hydroxide (5.6 equiv., 35% w/v) in DMF and stirred for 1 h. Methyl iodide (3.0 equiv.) was then added dropwise over the course of 20 min. The reaction mixture was stirred for 12 h at room temperature. After reaction, water was added and the reaction mixture was extracted using CH_2CI_2 further purified by silica gel column chromatography.

1,1'-diphenyl-2,2'-biimidazole (dPhbiim). This ligand was prepared according to the literature.⁴ A mixture of 2,2'-biimidazole (**biim**) (4 mmol), iodobenzene (10 mmol), phenanthroline (4 mmol), Cs_2CO_3 (10 mmol) and Cul (2 mmol) in DMF (30 mL) was heated to reflux for 24 h under nitrogen. Upon cooling to room temperature, water was added and the reaction mixture was extracted using CH_2Cl_2 . Solvent was removed under reduced pressure. The further purification was performed by silica gel column chromatography.

GFppy: Yield 90%, transparent liquid; ¹H NMR (400 MHz, CDCl₃) δ 8.69 (d, *J* = 4.5 Hz, 1H), 8.06 – 7.96 (m, 1H), 7.76 – 7.67 (m, 2H), 7.25 – 7.17 (m, 1H), 7.02 – 6.95 (m, 1H), 6.93 – 6.84 (m, 1H).

POFdFppy: Yield 40%, white solid; ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.68 (d, *J* = 4.6 Hz, 1H), 8.24 – 8.13 (m, 1H), 7.88 – 7.82 (m, 1H), 7.81 – 7.73 (m, 4H), 7.64 – 7.52 (m, 7H), 7.41 – 7.37 (m, 1H), 7.35 – 7.29 (m, 1H).

biim: Yield 33%, cream white solid; ¹H NMR (400 MHz, DMSO- d_6) δ 11.89 (s, 2H), 7.14 – 7.06

(m, 4H).

N NH

N_N-CH3

 M^{\sim}_{\sim} dMebiim: Yield 62%, white solid; ¹H NMR (400 MHz, DMSO- d_6) δ 7.28 (s, 2H), 7.02 (s, 2H),

3.93 (s, 6H). n⊸n⊸

^N dPhbiim: Yield 68%, white solid; ¹H NMR (400 MHz, CDCl₃) δ 7.26 (d, *J* = 1.2 Hz, 2H), 7.23 − 7.13 (m, 6H), 7.06 (d, *J* = 1.2 Hz, 2H), 6.73 − 6.70 (m, 4H).

POF1: Yield 52%, yellow solid; ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.97 (d, *J* = 8.3 Hz, 2H), 8.42 (s, 2H), 8.38 – 8.33 (m, 2H), 8.12 (dd, *J* = 8.3, 5.1 Hz, 2H), 8.06 (d, *J* = 8.8 Hz, 2H), 7.89 (t, *J* = 8.2 Hz, 2H), 7.83 – 7.75 (m, 8H), 7.63 – 7.52 (m, 14H), 7.06 (t, *J* = 6.7 Hz, 2H), 5.82 (dd, *J* = 9.6, 3.6 Hz, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 163.7, 161.8, 161.5, 161.0, 159.7, 151.4, 150.1, 145.5, 140.3, 139.6, 134.4, 133.5, 131.9, 131.3, 130.6, 129.3, 128.7, 128.4, 127.5, 125.0, 124.0, 114.9, 104.9, 104.1. HRMS (MALDI-TOF, *m/z*): calcd for C₅₈H₃₈F₄N₄O₂P₂Ir [M – PF₆]⁺ 1153.2035, found 1153.2028; calcd for C₄₆H₃₀F₄N₂O₂P₂Ir [M – PF₆ – phen]⁺ 973.1348, found 973.1061. Elem. anal. calcd (%) for C₅₈H₃₈F₁₀IrN₄O₂P₃: C, 53.67; H, 2.95; N, 4.32. Found: C, 53.50; H, 3.02; N, 4.34.

POF2: Yield 59%, yellow solid; ¹H NMR (400 MHz, DMSO- d_6) δ 8.91 (d, J = 8.2 Hz, 2H), 8.39 – 8.31 (m, 2H), 8.07 (d, J = 8.7 Hz, 2H), 7.99 – 7.93 (m, 4H), 7.81 – 7.70 (m, 12H), 7.64 – 7.50 (m, 12H), 7.24 (t, J = 6.7 Hz, 2H), 5.72 (dd, J = 9.6, 3.3 Hz, 2H). ¹³C NMR (100 MHz, DMSO- d_6) δ 163.7, 162.3, 161.8, 161.5, 159.7, 154.9, 150.4, 149.9, 140.5, 134.4, 133.5, 131.9, 130.6, 130.5, 129.3, 129.0, 128.7, 128.6, 125.4, 124.1, 114.8, 104.8, 104.1. HRMS (MALDI-TOF, m/z): calcd for C₅₆H₃₈F₄N₄O₂P₂Ir [M – PF₆]⁺ 1129.2035, found 1129.2035; calcd for C₄₆H₃₀F₄N₂O₂P₂Ir [M – PF₆ – bpy]⁺ 973.1348, found 973.1182. Elem. anal. calcd (%) for C₅₆H₃₈F₁₀IrN₄O₂P₃: C, 52.79; H, 3.01; N, 4.40. Found: C, 52.83; H, 3.38; N, 4.39.

POF3: Yield 56%, yellow-green solid; ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.73 (d, *J* = 8.4 Hz, 2H), 8.15 (d, *J* = 7.5 Hz, 2H), 8.09 (d, *J* = 8.7 Hz, 2H), 7.96 (t, *J* = 7.7 Hz, 2H), 7.79 – 7.69 (m, 10H), 7.65 – 7.58 (m, 6H), 7.57 – 7.50 (m, 8H), 7.24 (t, *J* = 6.6 Hz, 2H), 5.74 – 5.70 (m, 2H), 2.35 (s, 6H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 163.6, 161.8, 161.5, 159.7, 152.6, 149.9, 140.9, 140.3, 139.2, 134.3, 133.4, 132.0, 129.0, 128.7, 128.6, 125.1, 124.3, 124.2, 124.0, 114.9, 104.6, 103.8, 18.2. HRMS (MALDI-TOF, *m/z*): calcd for C₅₈H₄₂F₄N₄O₂P₂Ir [M – PF₆]⁺ 1157.2348, found 1157.2363; calcd for C₄₆H₃₀F₄N₂O₂P₂Ir [M – PF₆ – dMebpy]⁺ 973.1348, found 973.0884. Elem. anal. calcd (%) for C₅₈H₄₂F₁₀IrN₄O₂P₃: C, 53.50; H, 3.25; N, 4.30. Found: C, 52.90; H, 3.24; N, 4.36.

POF4: Yield 45%, lime green; ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.01 (d, *J* = 8.6 Hz, 2H), 7.93 (t, *J* = 7.6 Hz, 2H), 7.78 – 7.71 (m, 10H), 7.60 – 7.49 (m, 14H), 7.30 (t, *J* = 6.6 Hz, 2H), 6.68 (s, 2H), 5.79 (dd, *J* = 9.8, 3.7 Hz, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 163.4, 162.4, 161.9, 161.4, 159.4, 149.5, 140.9, 139.5, 134.5, 133.5, 131.9, 130.5, 130.4, 129.5, 128.7, 128.6, 126.6, 124.5, 123.4, 122.4, 114.9, 103.6, 102.8. HRMS (MALDI-TOF, *m/z*): calcd for C₅₂H₃₆F₄N₆O₂P₂Ir [M – PF₆]⁺ 1107.1940, found 1107.1923; calcd for C₄₆H₃₀F₄N₂O₂P₂Ir [M – PF₆]⁺ 1107.1940, found 1107.1923; calcd for C₅₂H₃₆F₁₀IrN₆O₂P₃: C, 49.89; H, 2.90; N, 6.71. Found: C, 49.57; H, 3.31; N, 7.13.

POF5: Yield 41%, lime green; ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.02 (d, *J* = 8.6 Hz, 2H), 7.95 (t, *J* = 8.1 Hz, 2H), 7.80 – 7.69 (m, 10H), 7.62 – 7.48 (m, 14H), 7.32 (t, *J* = 6.6 Hz, 2H), 6.64 (d, *J* = 1.1 Hz, 2H), 5.73 (dd, *J* = 9.8, 3.6 Hz, 2H), 4.23 (s, 6H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 163.3, 162.2, 161.6, 159.5, 149.7, 140.7, 139.7, 134.5, 133.7, 131.8, 130.5, 130.4, 129.4, 128.7, 128.6, 128.0, 126.7, 124.6, 123.4, 114.9, 103.8, 103.0, 37.9. HRMS (MALDI-TOF, *m/z*): calcd for $C_{54}H_{40}F_4N_6O_2P_2Ir$ [M – PF₆]⁺ 1135.2253, found 1135.2231; calcd for $C_{54}H_{40}F_4N_6O_2P_3Ir$ [M – PF₆]⁺ 1135.2253, found 1135.2231; calcd for $C_{54}H_{40}F_{10}IrN_6O_2P_3$: C, 50.67; H, 3.15; N, 6.57. Found: C, 50.97; H, 3.10; N, 6.37.

POF6: Yield 38%, green-yellow solid; ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.27 (d, *J* = 5.7 Hz, 2H), 8.07 (d, *J* = 8.7 Hz, 2H), 7.99 (t, *J* = 7.9 Hz, 2H), 7.82 – 7.72 (m, 10H), 7.65 – 7.57 (m, 4H), 7.56 – 7.49 (m, 8H), 7.37 (t, *J* = 6.7 Hz, 2H), 7.22 – 7.08 (m, 10H), 6.98 (s, 2H), 5.81 (dd, *J* = 9.7, 3.0 Hz, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 163.4, 162.1, 161.6, 161.3, 160.4, 159.5, 150.4, 140.0, 138.8, 135.7, 134.6, 133.8, 131.8, 130.6, 130.5, 129.6, 129.3, 128.7, 128.6, 128.1, 124.9, 124.6, 123.5, 115.2, 104.2, 103.4. HRMS (MALDI-TOF, *m/z*): calcd for C₄₆H₃₀F₄N₂O₂P₂Ir [M – PF₆ – dPhbiim]⁺ 973.1348, found 973.2037. Elem. anal. calcd (%) for C₆₄H₄₄F₁₀IrN₆O₂P₃: C, 54.74; H, 3.16; N, 5.98. Found: C, 54.33; H, 3.37; N, 5.64.

Fig. S1 Absorption spectra of C^N cyclometalating ligand and N^N ancillary ligands in CH_2Cl_2 (1 × 10⁻⁵ M) at room temperature.

Fig. S2 Emission spectra of POF1-POF6 in CH_2Cl_2 (black), in CH_3CN (red), 0.5 wt % doped in EC film (blue) and in neat film (green) at room temperature.

Fig. S3 Emission spectra of POF4 in 2-MeTHF (blue) at 77 K and in CH_2Cl_2 (red) at room temperature, c = 1 × 10⁻⁵ M.

Fig. S4 Phosphorescence decay profiles of POF1-POF5 in deoxygenated CH₂Cl₂ at room temperature.

Fig. S5 Cyclic voltammograms of POF1-POF6 in deoxygenated $\mathsf{CH}_2\mathsf{Cl}_2$ at room temperature.

Fig. S6 Emission spectra of POF6 in CH_3CN/H_2O mixtures with different water fractions (0-90%) at room temperature, $c = 5 \times 10^{-5}$ M.

Fig. S7 Electron density maps of the frontier molecular orbital of POF1-POF6 at the ground state optimized geometries.

Fig. S8 Variation of the emission intensity of POF1-POF6 incorporated into EC with the oxygen concentration.

Table S1 Parameters for the O ₂ -sensing film of the Ir(III)	complexes POF1-POF6 with EC as the supporting matrix
(fitting of the result to the two-site model).	

Complex (0.5 wt%)	$f_1^{\ a}$	f_2^a	K _{SV1} ^b	K _{SV2} ^b	r ^{2 c}	$K_{ m SV}^{appd}$
POF1	0.95663	0.04337	0.01317	0.0000	0.99737	0.01260
POF2	0.92476	0.06024	0.00401	0.0002	0.99850	0.00372
POF3	0.94103	0.05897	0.00805	0.0000	0.99926	0.00757
POF4	0.97139	0.02861	0.00622	0.0000	0.99957	0.00604
POF5	0.91765	0.07313	0.00313	0.0001	0.99913	0.00288
POF6	0.90316	0.09832	0.00535	0.0003	0.99838	0.00486

^{*a*} Ratio of the two portions of the Ir(III) complexes. ^{*b*} Quenching constant of the two portions. ^{*c*} Determination coefficients. ^{*d*} Weighted quenching constant, $K_{SV}^{app} = f_1 K_{SV1} + f_2 K_{SV2}$.

Fig. S12 The ¹H NMR spectrum of **dMebiim** in DMSO- d_6 .

7.27 7.26 7.26 7.06 6.71 6.71

Fig. S14 The ¹H NMR spectrum of **POF1** in DMSO- d_6 .

Fig. S16 The HRMS spectrum of POF1.

Fig. S18 The 13 C NMR spectrum of POF2 in DMSO- d_6 .

Fig. S30 The 13 C NMR spectrum of POF6 in DMSO- d_6 .

References

1 W. J. Choi, S. Choi, K. Ohkubo, S. Fukuzumi, E. J. Cho and Y. You, *Chem. Sci.*, 2015, **6**, 1454-1464. 2 C. Fan, Y. Li, C. Yang, H. Wu, J. Qin and Y. Cao, *Chem. Mater.*, 2012, **24**, 4581-4587.

3 A. F. Henwood, S. Evariste, A. M. Slawin and E. Zysmancolman, *Faraday Discuss.*, 2014, **174**, 165-182.

4 S. F. Huang, H. Z. Sun, G. G. Shan, Y. Wu, M. Zhang and Z. M. Su, New J. Chem., 2016, 40, 4635-4642.